
STA 610L: Module 4.6

Introduction to finite mixture models

(continuous data)

Dr. Olanrewaju Michael Akande

1 / 21

Continuous data (univariate case)
Suppose we have univariate continuous data , for , where

 is an unknown density.

Turns out that we can approximate "almost" any with a mixture of
normals. Usual choices are

1. Location mixture (multimodal):

2. Scale mixture (unimodal and symmetric about the mean, but fatter
tails than a regular normal distribution):

3. Location-scale mixture (multimodal with potentially fat tails):

yi
iid
∼ f i, … ,n

f

f

f(y) =
K

∑
k=1

λkN (μk,σ2)

f(y) =
K

∑
k=1

λkN (μ,σ2
k
)

f(y) =
K

∑
k=1

λkN (μk,σ2
k
)

2 / 21

Location mixture example

f(y) = 0.55N (−10, 4) + 0.30N (0, 4) + 0.15N (10, 4)

3 / 21

Scale mixture example

f(y) = 0.55N (0, 1) + 0.30N (0, 5) + 0.15N (0, 10)

4 / 21

Location-scale mixture example

f(y) = 0.55N (−10, 1) + 0.30N (0, 5) + 0.15N (10, 10)

5 / 21

Location mixture of normals

Consider the location mixture . How can we
do inference?

Right now, we only have three unknowns: ,
, and .

For priors, the most obvious choices are

,

, for each , and

.

However, we do not want to use the likelihood with the sum in the
mixture. We prefer products!

f(y) = ∑K
k=1 λkN (μk,σ2)

λ = (λ1, … ,λK)
μ = (μ1, … ,μK) σ2

π[λ] = Dirichlet(α1, … ,αK)

μk ∼ N (μ0, γ2
0) k = 1, … ,K

σ2 ∼ IG(,)
ν0

2

ν0σ
2
0

2

6 / 21

Data augmentation

This once again brings us to the concept of data augmentation, which we
can now discuss in a bit more detail.

Data augmentation is a commonly-used technique for designing MCMC
samplers using auxiliary/latent/hidden variables. Again, we have already
seen this.

Idea: introduce variable that depends on the distribution of the
existing variables in such a way that the resulting conditional
distributions, with included, are easier to sample from and/or result in
better mixing.

's are just latent/hidden variables that are introduced for the purpose
of simplifying/improving the sampler.

Z

Z

Z

7 / 21

Data augmentation

For example, suppose we want to sample from , but
and/or are complicated.

Choose such that , , and are easy
to sample from. Note that we have .

Alternatively, rewrite the model as and specify such that

where the resulting , , and from the joint
 are again easy to sample from.

Next, construct a Gibbs sampler to sample all three variables
from .

Finally, throw away the sampled 's and from what we know about Gibbs
sampling, the samples are from the desired .

p(x, y) p(x|y)
p(y|x)

p(z|x, y) p(x|y, z) p(y|x, z) p(z|x, y)
p(x, y, z) = p(z|x, y)p(x, y)

p(x, y|z) p(z)

p(x, y) = ∫ p(x, y|z)p(z)dz,

p(x|y, z) p(y|x, z) p(z|x, y)
p(x, y, z)

(X,Y ,Z)
p(x, y, z)

Z
(X,Y) p(x, y)

8 / 21

Location mixture of normals

Back to location mixture .

Introduce latent variable .

Then, we have

, and

.

How does that help? Well, the observed data likelihood is now

which is much easier to work with.

f(y) = ∑K
k=1 λkN (μk,σ2)

zi ∈ {1, … ,K}

yi|zi ∼ N (μzi ,σ
2)

Pr(zi = k) = λk ≡
K

∏
k=1

λ
1[zi=k]
k

p [Y = (y1, … , yn)|Z = (z1, … , zn), λ, μ,σ2] =
n

∏
i=1

p (yi|zi,μzi ,σ
2)

=
n

∏
i=1

 exp{− (yi − μzi)
2}

1

√2πσ2

1

2σ2

9 / 21

Posterior inference

The joint posterior is

π (Z, μ,σ2, λ|Y) ∝ [
n

∏
i=1

p (yi|zi,μzi ,σ
2)] ⋅ Pr(Z|μ,σ2, λ) ⋅ π(μ,σ2, λ)

∝ [
n

∏
i=1

p (yi|zi,μzi ,σ
2)] ⋅ Pr(Z|λ) ⋅ π(λ) ⋅ π(μ) ⋅ π(σ2)

∝ [
n

∏
i=1

 exp{− (yi − μzi)
2}]

 × [
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k]

 × [
K

∏
k=1

λ
αk−1
k] .

 × [
K

∏
k=1

N (μk;μ0, γ2
0)]

 × [IG(σ2; ,)] .

1

√2πσ2

1

2σ2

ν0

2

ν0σ
2
0

2

10 / 21

Full conditionals

For , sample from a categorical
distribution (multinomial distribution with sample size one) with
probabilities

Note that just means evaluating the density
at the value .

i = 1, … ,n zi ∈ {1, … ,K}

Pr[zi = k| …] =

=

= .

Pr[yi, zi = k|μk,σ2,λk]

K

∑
l=1

Pr[yi, zi = l|μl,σ2,λl]

Pr[yi|zi = k,μk,σ2] ⋅ Pr[zi = k|λk]

K

∑
l=1

Pr[yi|zi = l,μl,σ2] ⋅ Pr[zi = l|λl]

λk ⋅ N (yi;μk,σ2)

K

∑
l=1

λl ⋅ N (yi;μl,σ2)

N (yi;μk,σ2) N (μk,σ2)
yi

11 / 21

Full conditionals

Next, sample from

where , the number of individuals assigned to cluster

.

Sample the mean for each cluster from

Finally, sample from

λ = (λ1, … ,λK)

π[λ| …] ≡ Dirichlet (α1 + n1, … ,αK + nK) ,

nk =
n

∑
i=1

1[zi = k]

k

μk

π[μk| …] ≡ N (μk,n, γ2
k,n);

γ2
k,n = ; μk,n = γ2

k,n [ȳk + μ0] ,
1

+
nk

σ2

1

γ2
0

nk

σ2

1

γ2
0

σ2

π(σ2| …) = IG(,) .

νn = ν0 + n; σ2
n = [ν0σ

2
0 +

n

∑
i=1

(yi − μzi)
2] .

νn
2

νnσ
2
n

2

1

νn

12 / 21

Practical considerations

The standard Gibbs sampler for this model can suffer from label
switching.

For example, suppose our groups are men and women. Then, if we run
the sampler multiple times (starting from the same initial values),
sometimes it will settle on females as the first group, and sometimes on
females are the second group.

Specifically, MCMC on mixture models in general can suffer from label
switching.

Fortunately, results are still valid if we interpret them correctly.

Specifically, we should focus on quantities and estimands that are
invariant to permutations of the clusters. For example, look at marginal
quantities, instead of conditional ones.

13 / 21

Other practical considerations

So far we have assumed that the number of clusters is known.

What if we don't know ?

Compare marginal likelihood for different choices of and select
with best performance.

Can also use other metrics, such as MSE, and so on.

Maybe a prior on ?

Go Bayesian non-parametric: Dirichlet processes!

K

K

K K

K

14 / 21

See the R script here for sample

code.

15 / 21

https://sta-602l-s21.github.io/Course-Website/slides/Mixtures.R

Finite mixture of multivariate normals

It is relatively easy to extend this to the multivariate case.

As with the univariate case, given a sufficiently large number of mixture
components, a scale-location multivariate normal mixture model can be
used to approximate any multivariate density.

We have

Or equivalently,

yi

iid
∼

K

∑
k=1

λk ⋅ Np(μk, Σk)

yi|zi, μzi , Σzi ∼ Np(μzi , Σzi)

Pr(zi = k) = λk ≡
K

∏
k=1

λ
1[zi=k]
k

16 / 21

Posterior inference

We can then specify priors as

We can also just use the conjugate option for to avoid
specifying , so that we have

Gibbs sampler for both options follow directly from STA 360/601/602 and
what we have covered so far.

π(μk) = Np (μ0, Λ0) for k = 1, … ,K;

π(Σk) = IWp (ν0,S0) for k = 1, … ,K;

π[λ] = Dirichlet(a1, … , aK).

π(μk, Σk)
Λ0

π(μk, Σk) = π(μk|Σk) ⋅ π(Σk)

= Np(μ0, Σk) ⋅ IWp (ν0,S0) for k = 1, … ,K;

π[λ] = Dirichlet(a1, … , aK).

1

κ0

17 / 21

Label switching again

To avoid label switching when fitting the model, we can constrain the
order of the 's.

Here are three of many approaches:

1. Constrain the prior on the 's to be

which does not always seem reasonable.

2. Relax option 1 above to only the first component of the mean vectors

3. Try an ad-hoc fix. After sampling the 's, rearrange the labels to
satisfy and reassign the labels on

accordingly.

μk

μk

μk|Σk ∼ Np(μ0, Σk) μk−1 < μk < μk+1,
1

κ0

μk|Σk ∼ Np(μ0, Σk) μ1,k−1 < μ1,k < μ1,k+1.
1

κ0

μk

μ1,k−1 < μ1,k < μ1,k+1 Σk

18 / 21

DP mixture of normals (teaser)
To avoid setting apriori, we can extend this finite mixture of normals
to a Dirichlet process (DP) mixture of normals.

The first level of the model remains the same. That is,

K

yi|zi, μzi , Σzi ∼ Np(μzi , Σzi) for each i;

π(μk, Σk) = π(μk|Σk) ⋅ π(Σk)

= Np(μ, Σk) ⋅ IWp (ν0,S0) for each k.
1

κ0

19 / 21

DP mixture of normals (teaser)
For the prior on , use the following stick breaking
representation of the Dirichlet process.

As an approximation, use with

 set to be as large as possible!

This specification forces the model to only use as many components as
needed, and usually, no more. Also, the Gibbs sampler is relatively
straightforward.

Other details are beyond the scope of this course, but I am happy to
provide resources for those interested!

λ = (λ1, … ,λK)

P(zi = k) = λk;

λk = Vk∏
l<k

(1 − Vl) for k = 1, … , ∞;

Vk
iid
∼ Beta(1,α);

α ∼ Gamma(a, b).

λk = Vk ∏
l<k

(1 − Vl) for k = 1, … ,K⋆

K⋆

20 / 21

What's next?
Move on to the readings for the next module!

21 / 21

