STA 610L: MODULE 4.5

INTRODUCTION TO FINITE MIXTURE MODELS (CATEGORICAL DATA)

Dr. Olanrewaju Michael Akande

CATEGORICAL DATA (UNIVARIATE)

- Suppose
 - $Y \in \{1, \ldots, D\};$
 - $lacksquare \Pr(y=d)= heta_d$ for each $d=1,\ldots,D$; and
 - ullet $oldsymbol{ heta} = (heta_1, \dots, heta_D).$
- lacktriangle Then the pmf of Y is

$$\Pr[y=d|oldsymbol{ heta}] = \prod_{d=1}^D heta_d^{1[y=d]}.$$

- We say Y has a multinomial distribution with sample size 1, or a categorical distribution.
- lacksquare Write as $Y|oldsymbol{ heta}\sim \operatorname{Multinomial}(1,oldsymbol{ heta})$ or $Y|oldsymbol{ heta}\sim \operatorname{Categorical}(oldsymbol{ heta}).$
- Clearly, this is just an extension of the Bernoulli distribution.

DIRICHLET DISTRIBUTION

- Since the elements of the probability vector θ must always sum to one, that is, its support is the D-1 simplex.
- A conjugate prior for categorical/multinomial data is the Dirichlet distribution.
- ullet A random variable $oldsymbol{ heta}$ has a Dirichlet distribution with parameter $oldsymbol{lpha}$, if

$$p[m{ heta}|m{lpha}] = rac{\Gamma\left(\sum_{d=1}^D lpha_d
ight)}{\prod_{d=1}^D \Gamma(lpha_d)} \prod_{d=1}^D heta_d^{lpha_d-1}, \quad lpha_d > 0 \; ext{ for all } \; d=1,\ldots,D.$$

where $\boldsymbol{\alpha}=(\alpha_1,\ldots,\alpha_D)$, and

$$\sum_{d=1}^D heta_d = 1, \;\; heta_d \geq 0 \;\; ext{for all} \;\; d=1,\ldots,D.$$

- ullet We write this as $oldsymbol{ heta}\sim \mathrm{Dirichlet}(oldsymbol{lpha})=\mathrm{Dirichlet}(lpha_1,\ldots,lpha_D).$
- The Dirichlet distribution is a multivariate generalization of the beta distribution.

DIRICHLET DISTRIBUTION

Write

$$lpha_0 = \sum_{d=1}^D lpha_d \;\; ext{and} \;\; lpha_d^\star = rac{lpha_d}{lpha_0}.$$

Then we can re-write the pdf as

$$p[oldsymbol{ heta}|oldsymbol{lpha}] = rac{\Gamma\left(lpha_0
ight)}{\prod_{d=1}^D\Gamma(lpha_d)} \prod_{d=1}^D heta_d^{lpha_d-1}, ~~ lpha_d > 0 ~~ ext{for all} ~~ d = 1, \ldots, D.$$

Properties:

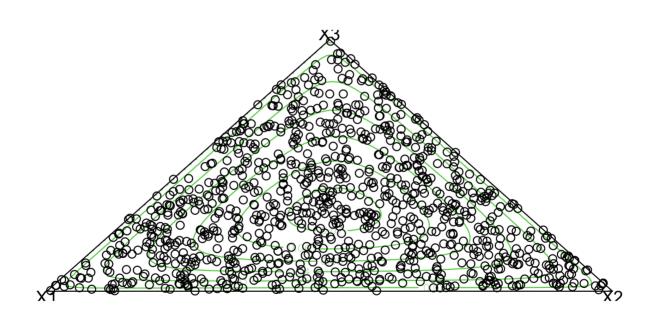
$$\mathbb{E}[heta_d] = lpha_d^\star;$$

$$\operatorname{Mode}[heta_d] = rac{lpha_d - 1}{lpha_0 - d};$$

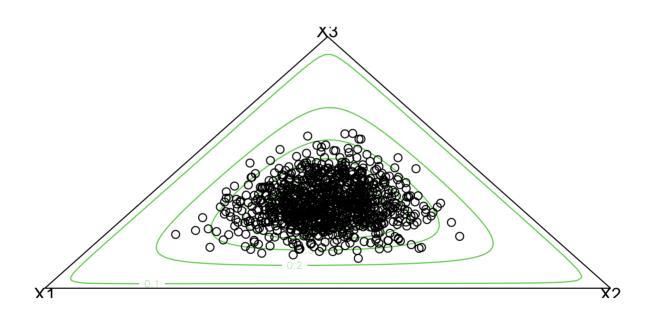
$$\mathbb{V}\mathrm{ar}[heta_d] = rac{lpha_d^\star(1-lpha_d^\star)}{lpha_0+1} = rac{\mathbb{E}[heta_d](1-\mathbb{E}[heta_d])}{lpha_0+1};$$

$$\mathbb{C} ext{ov}[heta_d, heta_k] = rac{lpha_d^\starlpha_k^\star}{lpha_0+1} = rac{\mathbb{E}[heta_d]\mathbb{E}[heta_k]}{lpha_0+1}.$$

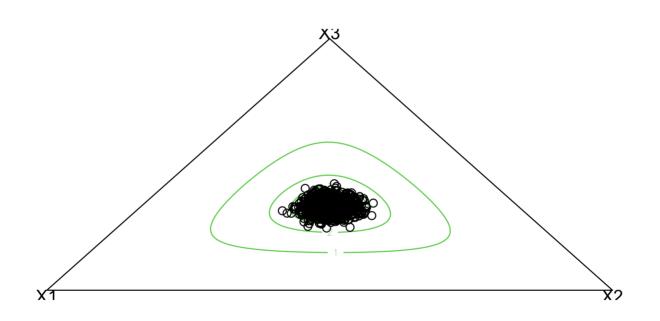
Dirichlet(1,1,1)



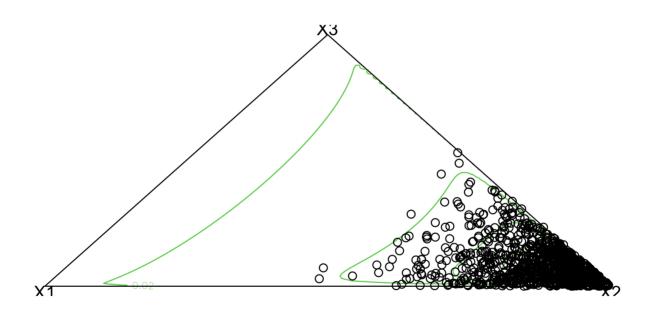
Dirichlet(10, 10, 10)



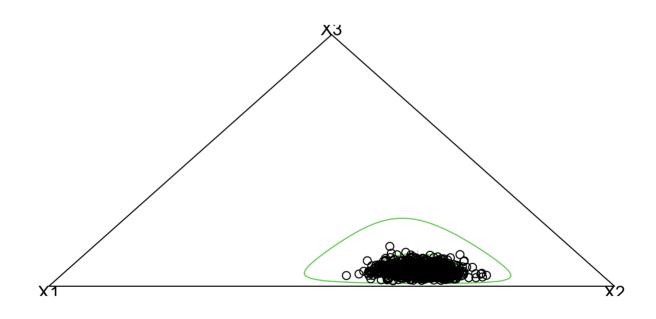
Dirichlet(100, 100, 100)



Dirichlet(1, 10, 1)



Dirichlet(50, 100, 10)



LIKELIHOOD

- Let $Y_i, ..., Y_n | \boldsymbol{\theta} \sim \operatorname{Categorical}(\boldsymbol{\theta})$.
- Recall

$$\Pr[y_i = d | oldsymbol{ heta}] = \prod_{d=1}^D heta_d^{1[y_i = d]}.$$

Then,

$$p[Y|oldsymbol{ heta}] = p[y_1,\ldots,y_n|oldsymbol{ heta}] = \prod_{i=1}^n \prod_{d=1}^D heta_d^{1[y_i=d]} = \prod_{d=1}^D heta_d^{\sum_{i=1}^n 1[y_i=d]} = \prod_{d=1}^D heta_d^{n_d}$$

where n_d is just the number of individuals in category d.

• Maximum likelihood estimate of θ_d is

$$\hat{ heta}_d = rac{n_d}{n}, \;\; d=1,\ldots,D$$

Posterior

• Set $\pi(\boldsymbol{\theta}) = \mathrm{Dirichlet}(\alpha_1, \ldots, \alpha_D)$. Then

$$egin{aligned} \pi(oldsymbol{ heta}|Y) &\propto p[Y|oldsymbol{ heta}] \cdot \pi[oldsymbol{ heta}] \ &\propto \prod_{d=1}^D heta_d^{n_d} \prod_{d=1}^D heta_d^{lpha_d-1} \ &\propto \prod_{d=1}^D heta_d^{lpha_d+n_d-1} \ &= \mathrm{Dirichlet}(lpha_1+n_1,\ldots,lpha_D+n_D) \end{aligned}$$

Posterior expectation:

$$\mathbb{E}[heta_d|Y] = rac{lpha_d + n_d}{\sum_{d^\star=1}^D (lpha_{d^\star} + n_{d^\star})}.$$

- We can also extend the Dirichlet-multinomial model to more variables (contingency tables).
- ullet First, what if our data actually comes from K different sub-populations of groups of people?

FINITE MIXTURE OF MULTINOMIALS

- For example, if our categorical data comes from men and women, and we don't expect marginal independence across the two groups, then we have a mixture of distributions.
- With our data coming from a "combination" or "mixture" of subpopulations, we no longer have independence across all observations, so that the likelihood $p[Y|\pmb{\theta}] \neq \prod_{i=1}^n \prod_{d=1}^D \theta_j^{1[y_i=d]}$.
- However, we can still have "conditional independence" within each group.
- Unfortunately, we do not always know the indexes for those groups.
- lacktriangleright That is, we know our data contains K different groups, but we actually do not know which observations belong to which groups.
- Solution: introduce a latent variable z_i representing the group/cluster indicator for each observation i, so that each $z_i \in \{1, \ldots, K\}$.

FINITE MIXTURE OF MULTINOMIALS

• Given the cluster indicator z_i for observation i, write

$$lacksquare \Pr(y_i=d|z_i)=\psi_{z_i,d}\equiv\prod_{d=1}^D\psi_{z_i,d}^{1[y_i=d|z_i]}$$
 , and

$$ullet ext{Pr}(z_i=k)=\lambda_k\equiv\prod\limits_{k=1}^K\lambda_k^{1[z_i=k]}.$$

Then, the marginal probabilities we care about will be

$$egin{aligned} heta_d &= \Pr(y_i = d) \ &= \sum_{k=1}^K \Pr(y_i = d | z_i = k) \cdot \Pr(z_i = k) \ &= \sum_{k=1}^K \lambda_k \cdot \psi_{k,d}, \end{aligned}$$

which is a finite mixture of multinomials, with the weights given by λ_k .

- Write
 - lacksquare $oldsymbol{\lambda}=(\lambda_1,\ldots,\lambda_K)$, and
 - $\psi = \{\psi_{z_i,d}\}$ to be a $K \times D$ matrix of probabilities, where each kth row is the vector of probabilities for cluster k.
- The observed data likelihood is

$$egin{aligned} p\left[Y=(y_1,\ldots,y_n)|Z=(z_1,\ldots,z_n),oldsymbol{\psi},oldsymbol{\lambda}
ight] &=\prod_{i=1}^n\prod_{d=1}^D ext{Pr}\left(y_i=d|z_i,\psi_{z_i,d}
ight) \ &=\prod_{i=1}^n\prod_{d=1}^D\psi_{z_i,d}^{1[y_i=d|z_i]}, \end{aligned}$$

which includes products (and not the sums in the mixture pdf), and as you will see, makes sampling a bit easier.

Next we need priors.

• First, for $\lambda = (\lambda_1, \dots, \lambda_K)$, the vector of cluster probabilities, we can use a Dirichlet prior. That is,

$$\pi[oldsymbol{\lambda}] = \mathrm{Dirichlet}(lpha_1, \ldots, lpha_K) \propto \prod_{k=1}^K \lambda_k^{lpha_k - 1}.$$

• For ψ , we can assume independent Dirichlet priors for each cluster vector $\psi_k = (\psi_{k,1}, \dots, \psi_{k,D})$. That is, for each $k = 1, \dots, K$,

$$\pi[oldsymbol{\psi}_k] = ext{Dirichlet}(a_1, \dots, a_d) \propto \prod_{d=1}^D \psi_{k,d}^{a_d-1}.$$

• Finally, from our distribution on the z_i 's, we have

$$p\left[Z=(z_1,\ldots,z_n)|oldsymbol{\lambda}
ight]=\prod_{i=1}^n\prod_{k=1}^K\lambda_k^{1[z_i=k]}.$$

- lacktriangleright Note that the unobserved variables and parameters are $Z=(z_1,\ldots,z_n)$, $m{\psi}$, and $m{\lambda}$.
- So, the joint posterior is

$$egin{aligned} \pi\left(Z,oldsymbol{\psi},oldsymbol{\lambda}
ight) &\propto p\left[Y|Z,oldsymbol{\psi},oldsymbol{\lambda}
ight] \cdot p(Z|oldsymbol{\psi},oldsymbol{\lambda}) \cdot \pi(oldsymbol{\psi},oldsymbol{\lambda}) \ &\propto \left(\prod_{i=1}^n\prod_{d=1}^D \psi_{z_i,d}^{1[y_i=d|z_i]}
ight) \ & imes \left(\prod_{i=1}^n\prod_{k=1}^K \lambda_k^{1[z_i=k]}
ight) \ & imes \left(\prod_{k=1}^K\prod_{d=1}^D \psi_{k,d}^{lpha_d-1}
ight) \ & imes \left(\prod_{k=1}^K \lambda_k^{lpha_k-1}
ight) \ & imes \left(\prod_{k=1}^K \lambda_k^{lpha_k-1}
ight). \end{aligned}$$

- First, we need to sample the z_i 's, one at a time, from their full conditionals.
- lacksquare For $i=1,\ldots,n$, sample $z_i\in\{1,\ldots,K\}$ from a categorical distribution (multinomial distribution with sample size one) with probabilities

$$egin{aligned} \Pr[z_i = k | y_i, oldsymbol{\psi}_k, \lambda_k] \ &= rac{\Pr[y_i, z_i = k | oldsymbol{\psi}_k, \lambda_k]}{\sum\limits_{l=1}^K \Pr[y_i, z_i = l | oldsymbol{\psi}_l, \lambda_l]} \ &= rac{\Pr[y_i | z_i = k, oldsymbol{\psi}_k] \cdot \Pr[z_i = k, \lambda_k]}{\sum\limits_{l=1}^K \Pr[y_i | z_i = l, oldsymbol{\psi}_l] \cdot \Pr[z_i = l, \lambda_l]} \ &= rac{oldsymbol{\psi}_{k,d} \cdot \lambda_k}{\sum\limits_{l=1}^K oldsymbol{\psi}_{l,d} \cdot \lambda_l}. \end{aligned}$$

lacksquare Next, sample each cluster vector $oldsymbol{\psi}_k = (\psi_{k,1}, \dots, \psi_{k,D})$ from

$$egin{aligned} \pi[oldsymbol{\psi}_k|\dots] &\propto \pi\left(Z,oldsymbol{\psi},oldsymbol{\lambda}|Y) \ &\propto \left(\prod_{i=1}^n\prod_{d=1}^D\psi_{z_i,d}^{1[y_i=d|z_i]}
ight) \cdot \left(\prod_{i=1}^n\prod_{k=1}^K\lambda_k^{1[z_i=k]}
ight) \cdot \left(\prod_{k=1}^K\prod_{d=1}^D\psi_{k,d}^{a_d-1}
ight) \cdot \left(\prod_{k=1}^K\lambda_k^{a_k-1}
ight) \ &\propto \left(\prod_{d=1}^D\psi_{k,d}^{n_{k,d}}
ight) \cdot \left(\prod_{d=1}^D\psi_{k,d}^{a_d-1}
ight) \ &= \left(\prod_{d=1}^D\psi_{k,d}^{a_d+n_{k,d}-1}
ight) \ &\equiv \mathrm{Dirichlet}\left(a_1+n_{k,1},\dots,a_D+n_{k,D}
ight). \end{aligned}$$

where $n_{k,d}=\sum\limits_{i:z_i=k}1[y_i=d]$, the number of individuals in cluster k that are assigned to category d of the levels of y.

• Finally, sample $\boldsymbol{\lambda}=(\lambda_1,\ldots,\lambda_K)$, the vector of cluster probabilities from

$$\begin{split} \pi[\boldsymbol{\lambda}|\ldots] &\propto \pi\left(Z,\boldsymbol{\psi},\boldsymbol{\lambda}|Y\right) \\ &\propto \left(\prod_{i=1}^n \prod_{d=1}^D \psi_{z_i,d}^{1[y_i=d|z_i]}\right) \cdot \left(\prod_{i=1}^n \prod_{k=1}^K \lambda_k^{1[z_i=k]}\right) \cdot \left(\prod_{k=1}^K \prod_{d=1}^D \psi_{k,d}^{\alpha_d-1}\right) \cdot \left(\prod_{k=1}^K \lambda_k^{\alpha_k-1}\right) \\ &\propto \left(\prod_{i=1}^n \prod_{k=1}^K \lambda_k^{1[z_i=k]}\right) \cdot \left(\prod_{k=1}^K \lambda_k^{\alpha_k-1}\right) \\ &\propto \left(\prod_{k=1}^K \lambda_k^{n_k}\right) \cdot \left(\prod_{k=1}^K \lambda_k^{\alpha_k-1}\right) \\ &\propto \left(\prod_{k=1}^K \lambda_k^{\alpha_k+n_k-1}\right) \\ &\equiv \text{Dirichlet}\left(\alpha_1+n_1,\ldots,\alpha_K+n_K\right), \end{split}$$

with $n_k = \sum\limits_{i=1}^n \mathbb{1}[z_i = k]$, the number of individuals assigned to cluster k.

CATEGORICAL DATA: BIVARIATE CASE

- How can we extend the same ideeas to multiple categorical variables?
- lacktriangle Well let's start small. Suppose we have data (y_{i1},y_{i2}) , for $i=1,\ldots,n$, where
 - $y_{i1} \in \{1, \ldots, D_1\}$
 - $y_{i2} \in \{1, \ldots, D_2\}.$
- This is just a two-way contingency table, so that we are interested in estimating the probabilities $\Pr(y_{i1}=d_1,y_{i2}=d_2)=\theta_{d_1d_2}$.
- ullet Write $oldsymbol{ heta}=\{ heta_{d_1d_2}\}$, which is a $D_1 imes D_2$ matrix of all the probabilities.

CATEGORICAL DATA: BIVARIATE CASE

The likelihood is therefore

$$egin{align} p[Y|m{ heta}] &= \prod_{i=1}^n \prod_{d_2=1}^{D_2} \prod_{d_1=1}^{D_1} heta_{d_1d_2}^{1[y_{i1}=d_1,y_{i2}=d_2]} \ &= \prod_{d_2=1}^{D_2} \prod_{d_1=1}^{D_1} heta_{d_1d_2}^{\sum\limits_{i=1}^n 1[y_{i1}=d_1,y_{i2}=d_2]} \ &= \prod_{d_2=1}^{D_2} \prod_{d_1=1}^{D_1} heta_{d_1d_2}^{n_{d_1d_2}} \end{aligned}$$

where $n_{d_1d_2}=\sum\limits_{i=1}^n 1[y_{i1}=d_1,y_{i2}=d_2]$ is just the number of observations in cell (d_1,d_2) of the contingency table.

- How can we do Bayesian inference?
- Several options! Most common are:
- Option 1: Follow the univariate approach.
 - Rewrite the bivariate data as univariate data, that is, $y_i \in \{1, \dots, D_1D_2\}$.
 - ullet Write $\Pr(y_i=d)=
 u_d$ for each $d=1,\dots,D_1D_2$.
 - Specify Dirichlet prior as $m{
 u}=(
 u_1,\dots,
 u_{D_1D_2})\sim \mathrm{Dirichlet}(lpha_1,\dots,lpha_{D_1D_2}).$
 - Then, posterior is also Dirichlet with parameters updated with the number in each cell of the contingency table.

- Option 2: Assume independence, then follow the univariate approach.
 - ullet Write $\Pr(y_{i1}=d_1,y_{i2}=d_2)=\Pr(y_{i1}=d_1)\Pr(y_{i2}=d_2)$, so that $heta_{d_1d_2}=\lambda_{d_1}\psi_{d_2}.$
 - ullet Specify independent Dirichlet priors on $oldsymbol\lambda=(\lambda_1,\ldots,\lambda_{D_1})$ and $oldsymbol\psi=(\psi_1,\ldots,\psi_{D_2}).$
 - That is,
 - $oldsymbol{\lambda} \sim \operatorname{Dirichlet}(a_1, \dots, a_{D_1})$
 - ullet $oldsymbol{\psi} \sim ext{Dirichlet}(b_1,\ldots,b_{D_2}).$
 - This reduces the number of parameters from D_1D_2-1 to D_1+D_2-2 .

Option 3: Log-linear model

$$lackbox{lackbox{lackbox{$lackbox{}}}} heta_{d_1d_2} = rac{e^{lpha_{d_1}+eta_{d_2}+\gamma_{d_1d_2}}}{\sum\limits_{d_2=1}^{D_2}\sum\limits_{d_1=1}^{D_1}e^{lpha_{d_1}+eta_{d_2}+\gamma_{d_1d_2}}};$$

Specify priors (perhaps normal) on the parameters.

- Option 4: Latent structure model
 - Assume conditional independence given a latent variable;
 - That is, write

$$egin{aligned} heta_{d_1d_2} &= \Pr(y_{i1} = d_1, y_{i2} = d_2) \ &= \sum_{k=1}^K \Pr(y_{i1} = d_1, y_{i2} = d_2 | z_i = k) \cdot \Pr(z_i = k) \ &= \sum_{k=1}^K \Pr(y_{i1} = d_2 | z_i = k) \cdot \Pr(y_{i2} = d_2 | z_i = k) \cdot \Pr(z_i = k) \ &= \sum_{k=1}^K \lambda_{k,d_1} \psi_{k,d_2} \cdot \omega_k. \end{aligned}$$

■ This is once again, a finite mixture of multinomial distributions.

CATEGORICAL DATA: EXTENSIONS

- For categorical data with more than two categorical variables, it is relatively easy to extend the framework for latent structure models.
- Clearly, there will be many more parameters (vectors and matrices) to keep track of, depending on the number of clusters and number of variables!
- If interested, read up on finite mixture of products of multinomials.
- Can also go full Bayesian nonparametrics with a Dirichlet process mixture of products of multinomials.
- Happy to provide resources for those interested!

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

