STA 610L: MobuLe 4.5

INTRODUCTION TO FINITE MIXTURE MODELS
(CATEGORICAL DATA)

Dr. OLANREWAJU MICHAEL AKANDE

1727



CATEGORICAL DATA (UNIVARIATE)

= Suppose
« Y € {1,...,D};
» Pr(y=d) =6, foreachd =1,...,D; and
= 0= (6,...,0p).

Then the pmf of Y is

D
Prly = d|g] = [] 6"
d=1

We say Y has a multinomial distribution with sample size 1, or a
categorical distribution.

Clearly, this is just an extension of the Bernoulli distribution.

Write as Y'|@ ~ Multinomial(1, 8) or Y|@ ~ Categorical(8).
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DIRICHLET DISTRIBUTION

= Since the elements of the probability vector @ must always sum to one,
that is, its support is the D — 1 simplex.

= A conjugate prior for categorical/multinomial data is the Dirichlet
distribution.

= A random variable @ has a Dirichlet distribution with parameter «, if

F(ZdDzlad) D
Hejdfl, og>0 forall d=1,...,D.

plbla] = —
Hd:1 D(ag) a1

where o« = (a1, ...,ap), and
D
Y 6i=1, 02>0 forall d=1,...,D.
d=1

= We write this as @ ~ Dirichlet(a) = Dirichlet(ay,...,ap).

= The Dirichlet distribution is a multivariate generalization of the beta
distribution.
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DIRICHLET DISTRIBUTION

s Write

agq
E ag and = :

7))

= Then we can re-write the pdf as

T
p[0la] = LH&‘“ 'Yag>0foralld=1,...
T2 Taa) 31
= Properties:
u E[Od]:ag;
: Mode[8] — 24—
odelvd _Ol()—d’
ar(1—ar)  E[6,](1—E[8
. Var[6,) i d): [0a)( [64])
0+1 a0+1
asar E|6,;|E|0
. Cov[fy, 6] — —% [0a]E (6]



DIRICHLET EXAMPLES

Dirichlet(1,1,1)




DIRICHLET EXAMPLES

Dirichlet(10, 10, 10)




DIRICHLET EXAMPLES

Dirichlet(100, 100, 100)




DIRICHLET EXAMPLES

Dirichlet(1, 10, 1)




DIRICHLET EXAMPLES

Dirichlet(50, 100, 10)




LIKELIHOOD

Let Y;, ..., Y,|0 ~ Categorical(8).

Recall

D
Pr[y; = d|6] = H gcll[yi:d].
d=1

Then,

D

D D

yi=d] __ Z?:ll[yi:d} _ 7

6," " =110 =11
=1 d=1 d=1

i=1d

where ng is just the number of individuals in category d.

Maximum likelihood estimate of 0 is




POSTERIOR

» Set m(6) = Dirichlet(a,...,ap). Then

m(8]Y) o p[Y'|6] - (6]

D D
7 ag—1
x I I 0, I I0d
d=1

d=1

D
ag+nqg—1
<11
d=1

= Dirichlet(a;1 + n1,...,ap + np)

= Posterior expectation:

ad + ng

D

E[6,]Y] = |
=1 (Oﬁd* + nd*)

= We can also extend the Dirichlet-multinomial model to more variables
(contingency tables).

= First, what if our data actually comes from K different sub-populations
of groups of people?




FINITE MIXTURE OF MULTINOMIALS

= For example, if our categorical data comes from men and women, and we
don't expect marginal independence across the two groups, then we have
a mixture of distributions.

= With our data coming from a "combination” or "mixture” of sub-
populations, we no longer have independence across all observations, so

n D B
that the likelihood p[Y6] # T T] 6% .
1=1d=1

= However, we can still have "conditional independence” within each group.
= Unfortunately, we do not always know the indexes for those groups.

= That is, we know our data contains K different groups, but we actually
do not know which observations belong to which groups.

= Solution: introduce a latent variable z; representing the group/cluster
indicator for each observation , so that each z; € {1,..., K}.
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FINITE MIXTURE OF MULTINOMIALS

= Given the cluster indicator z; for observation z, write
= Pr(y; =d|z;) = v, = ]] %ii@_ *, and
K
] Pr(Zz:k):AkE HA

= Then, the marginal probabilities we care about will be
04 = Pr(y; = d)

K
= Pr(y; =d|zi = k) - Pr(zi = k)
k=1

K
= Ak Yrd,
k=1

which is a finite mixture of multinomials, with the weights given by .




POSTERIOR INFERENCE

= Write
= A= (\,...,AK), and

= ¢ = {9, 4} to be a K x D matrix of probabilities, where each kth
row is the vector of probabilities for cluster k.

= The observed data likelihood is

o

plY = (- son)lZ = (21,..., 2

e
Il

i=1d

PI‘ — d|zm¢z d)

n

Il
—

::]m

,(/)?J d|2

Il
—

which includes products (and not the sums in the mixture pdf), and as
you will see, makes sampling a bit easier.

= Next we need priors.




POSTERIOR INFERENCE

= First, for A = (A1,..., Ak), the vector of cluster probabilities, we can
use a Dirichlet prior. That is,

7[A] = Dirichlet(ay, . ) o H AT L

= For 1), we can assume independent Dirichlet priors for each cluster
vector ¥ = (Yr1,...,Yrp). Thatis, foreachk =1,..., K,

m[4y] = Dirichlet(ay, . ) H Vi L

= Finally, from our distribution on the z;'s, we have

n

K
P[Z = (z1,...,22)|A] :HH)\l[z -y

i=1 k=1



POSTERIOR INFERENCE

= Note that the unobserved variables and parameters are Z = (z1,. .., 2n)
, ¥, and A.

= So, the joint posterior is

ﬂ-(Za '¢'?A|Y) X p[Y|Z,’¢, A] p(Z|'¢’, >‘) : W(qﬁb, >‘)

n D
X H Hp(yl == d|zi7¢2i,d)

“P(ZIA) - 7(9) - m(A)

n
X

A A

=1 k=1

K D

1T ad—1
X .L..H‘bk,d

k=1 d=1

K

TT yo—1
X .L..)‘k

k=1




POSTERIOR INFERENCE

= First, we need to sample the z;'s, one at a time, from their full
conditionals.

= Fori=1,...,n, sample z; € {1,..., K} from a categorical
distribution (multinomial distribution with sample size one) with
probabilities

Prlz; = k| ...] = Pr[z; = k|y;, ¥, Ak

Prly;, zi = k|vg, Ak

K
E Pr[yi7 2 = l|¢l7 )‘l]
=1

Prlyi|zi = k, ¥&] - Pr[zi = k, \i]

K
> Priyilz; = 1Lp] - Prlz, =1, A

=1

Vid * Ak
- .

PRI FRPY

=1




POSTERIOR INFERENCE

= Next, sample each cluster vector ¥y, = (¢¥x1,. .., Yk p) from
k| .. ] o< (2,9, AlY)

(i) (ffoe) (fifiee) (foe)

i=1 d=1 i=1 k=1 k=1 d=1 k=1

UL
- (fro=)

= Dirichlet (a1 + nk1,...,ap + nk,p) -

where n, g = Y 1|y, = d], the number of individuals in cluster k that
i:zi:k
are assigned to category d of the levels of y.




POSTERIOR INFERENCE

= Finally, sample A = (A1, ..., Ak), the vector of cluster probabilities
from

7[A|...] x 7 (Z,4, AlY)

(o) (infre) - (frftes)- (1)

n
with ng, = > 1[z; = k|, the number of individuals assigned to cluster k.
i=1




CATEGORICAL DATA: BIVARIATE CASE

How can we extend the same ideeas to multiple categorical variables?

Well let's start small. Suppose we have data (yi1, yi2), fori = 1,...,n,
where

= yi1 €{1,...,D1}
u yi2 - {].,...,DQ}.

This is just a two-way contingency table, so that we are interested in
estimating the probabilities Pr(yﬁ = di, Y2 = dz) = 04,d,-

Write @ = {64,4,}, which is a D; x D, matrix of all the probabilities.
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CATEGORICAL DATA: BIVARIATE CASE

= The likelihood is therefore
pivio) =TT 1] I o+

D, D Z 1[yi=d1,yir=ds]

- H H 0d1d2

=il dh=

D, D n
dydy
= H H O

=1d;=

n
where ng g, = > 1lyi1 = di,yi2 = dp] is just the number of

observations in cell (dy, d2) of the contingency table.




POSTERIOR INFERENCE

= How can we do Bayesian inference?
= Several options! Most common are:
= Option 1: Follow the univariate approach.

= Rewrite the bivariate data as univariate data, that is,
yi €{1,...,D1Ds}.

» Write Pr(y; =d) =y, foreachd =1,...,D1Ds».

m Specify Dirichlet prior as
v = (v1,...,Vp,p,) ~ Dirichlet(ay,...,ap,p,)-

= Then, posterior is also Dirichlet with parameters updated with the
number in each cell of the contingency table.
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POSTERIOR INFERENCE

= Option 2: Assume independence, then follow the univariate approach.

= Write Pr(yil =d1,Yi2 = dz) = Pr(yil = dl) Pr(yiz = dg), so that
9d1d2 — )‘d1¢d2°

= Specify independent Dirichlet priorson A = (Aq,...,Ap,) and

Y = (Y1,...,%D,).
= That is,
= A\ ~ Dirichlet(ay,...,ap,)
= 1 ~ Dirichlet(by, ..., bp,).

= This reduces the number of parameters from D D5 — 1 to
D+ Dy — 2.
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POSTERIOR INFERENCE

= Option 3: Log-linear model

% By +Vdydy

0 —
dydy D» D

;
Z Z ead1+/8d2+'7d1d2

do=1d;=1

= Specify priors (perhaps normal) on the parameters.




POSTERIOR INFERENCE

= Option 4: Latent structure model
= Assume conditional independence given a latent variable;

= That is, write

04,4, = Pr(yi1 = d1, yi2 = d2)

K
= Z Pr(ya = di,yi2 = da|2z; = k) - Pr(z; = k)

Pr(y; = dalz; = k) - Pr(ysn = da|z; = k) - Pr(z; = k)

M= I I

AkdiVk,dy * W

ey
Il

1

= This is once again, a finite mixture of multinomial distributions.
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CATEGORICAL DATA: EXTENSIONS

= For categorical data with more than two categorical variables, it is
relatively easy to extend the framework for latent structure models.

= Clearly, there will be many more parameters (vectors and matrices) to
keep track of, depending on the number of clusters and number of
variables!

= |f interested, read up on finite mixture of products of multinomials.

= Can also go full Bayesian nonparametrics with a Dirichlet process mixture
of products of multinomials.

= Happy to provide resources for those interested!
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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