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Meta-analysis

A meta-analysis is the "statistical analysis of a large collection of analysis
results from individual studies for the purpose of integrating the findings"
(Glass, 1976).

Meta-analysis is a standard tool for producing summaries of research findings
in medicine and other fields.

Meta-analysis can be useful when studies yield potentially conflicting results,
when sample sizes in individual studies are modest, when events are rare,
and in general to summarize a literature.

Hierarchical models are often used as part of meta-analysis.
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Example: TB studies

For our first example, we examine the results of 13 studies evaluating the
efficacy of a vaccine (BCG) for preventing tuberculosis.

You can click here to see where the vaccine is given.

The vaccine is generally not recommended for use in the US due to low TB
prevalence.

The data we will use in the metafor package.

This dataset has been used in several publications to illustrate meta-analytic
methods.

See the documentation of the package for more details.
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Example: TB studies

The goal of the meta-analysis was to examine the overall effectiveness of the
BCG vaccine for preventing tuberculosis and to examine moderators that may
potentially influence the size of the effect.

The data actually comes in the form of a contingency table, so we will first
compute our effectiveness measure from that.

Here, we focus on log risk ratio of tuberculosis infection in the treated
versus control groups in 13 studies.

We can also use other measures, for example, log odds ratio, if preferred.
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Example: TB studies

#library(metafor)
data(dat.bcg)
dat.bcg

##    trial               author year tpos  tneg cpos  cneg ablat      alloc
## 1      1              Aronson 1948    4   119   11   128    44     random
## 2      2     Ferguson & Simes 1949    6   300   29   274    55     random
## 3      3      Rosenthal et al 1960    3   228   11   209    42     random
## 4      4    Hart & Sutherland 1977   62 13536  248 12619    52     random
## 5      5 Frimodt-Moller et al 1973   33  5036   47  5761    13  alternate
## 6      6      Stein & Aronson 1953  180  1361  372  1079    44  alternate
## 7      7     Vandiviere et al 1973    8  2537   10   619    19     random
## 8      8           TPT Madras 1980  505 87886  499 87892    13     random
## 9      9     Coetzee & Berjak 1968   29  7470   45  7232    27     random
## 10    10      Rosenthal et al 1961   17  1699   65  1600    42 systematic
## 11    11       Comstock et al 1974  186 50448  141 27197    18 systematic
## 12    12   Comstock & Webster 1969    5  2493    3  2338    33 systematic
## 13    13       Comstock et al 1976   27 16886   29 17825    33 systematic

5 / 40



Example: TB studies

dat <- escalc(measure="RR", ai = tpos, bi = tneg, ci = cpos, di = cneg,
              data = dat.bcg, append = TRUE)
dat

##    trial               author year tpos  tneg cpos  cneg ablat      alloc 
## 1      1              Aronson 1948    4   119   11   128    44     random 
## 2      2     Ferguson & Simes 1949    6   300   29   274    55     random 
## 3      3      Rosenthal et al 1960    3   228   11   209    42     random 
## 4      4    Hart & Sutherland 1977   62 13536  248 12619    52     random 
## 5      5 Frimodt-Moller et al 1973   33  5036   47  5761    13  alternate 
## 6      6      Stein & Aronson 1953  180  1361  372  1079    44  alternate 
## 7      7     Vandiviere et al 1973    8  2537   10   619    19     random 
## 8      8           TPT Madras 1980  505 87886  499 87892    13     random 
## 9      9     Coetzee & Berjak 1968   29  7470   45  7232    27     random 
## 10    10      Rosenthal et al 1961   17  1699   65  1600    42 systematic 
## 11    11       Comstock et al 1974  186 50448  141 27197    18 systematic 
## 12    12   Comstock & Webster 1969    5  2493    3  2338    33 systematic 
## 13    13       Comstock et al 1976   27 16886   29 17825    33 systematic 
##         yi     vi 
## 1  -0.8893 0.3256 
## 2  -1.5854 0.1946 
## 3  -1.3481 0.4154 
## 4  -1.4416 0.0200 
## 5  -0.2175 0.0512 
## 6  -0.7861 0.0069 
## 7  -1.6209 0.2230 
## 8   0.0120 0.0040 
## 9  -0.4694 0.0564 
## 10 -1.3713 0.0730 
## 11 -0.3394 0.0124 
## 12  0.4459 0.5325 
## 13 -0.0173 0.0714 6 / 40



Forest plot of observed values

Note that yi represents the different effect sizes and vi gives the
corresponding sampling variances.

res <- rma(yi, vi, data=dat, method="FE") #start with fixed effects
forest(res,
       slab = paste(dat$author, dat$year, sep = ", "),
       xlim = c(-16, 6), at = log(c(0.05, 0.25, 1, 4)),
       ilab = cbind(dat$tpos, dat$tneg, dat$cpos, dat$cneg), 
       ilab.xpos = c(-9.5, -8, -6, -4.5), cex = 0.75)
op <- par(cex = 0.75, font = 2)
text(c(-9.5, -8, -6, -4.5), 15, c("TB+", "TB-", "TB+", "TB-")) 
text(c(-8.75, -5.25), 16, c("Vaccinated", "Control"))
text(-16, 15, "Author(s) and Year", pos = 4)
text(6, 15, "Log Risk Ratio [95% CI]", pos = 2)
par(op)
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Forest plot of observed values

Most are below zero on the log scale and five of the confidence intervals
include zero.
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Funnel plot

Funnel plots are scatter plots of each study's effect estimates against the
precision of the estimates.

Asymmetry can indicate publication bias.

Small, statistically insignificant studies are usually excluded from data
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Funnel plot

Maybe some bias but we also see larger than expected standard errors for 6
studies.
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Random effects meta-analysis

A random effects meta analysis typically assumes the model:

where

 is the effect estimate (possibly transformed) from study ,

 is the sampling error from study  (the sampling variance 
 estimated from each study is assumed known),

 is the average "true" effect, and

 is the heterogeneity among the study true effects.

yi = θi + ei

θi = μ + bi

bi ∼ N(0, τ 2),

yi i

ei ∼ N(0, vi) i

vi

μ

τ 2
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Random effects meta-analysis

In this framework, we may think of individual studies as:

replicates;

results from a variety of completely different studies of the same topic;

exchangeable yet not completely identical or unrelated.

Note the following:

 is typically the primary quantity of interest as a summary measure
across studies;

the error variance  varies across studies and is often treated as known
as the square of the standard error estimate from study .

μ

vi
i
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Example: spanking data

Kurz considers data on corporal punishment of children.

UNICEF (2014) reports that 80% of children worldwide are spanked or
physically punished by their parents.

Spanking is one of the most studied (and controversial) aspects of parenting,
and hundreds of studies are available on the topic.

The data spank.xlsx contain 111 summary measures of a variety of child
behavioral, emotional, cognitive, and physical outcomes from studies.
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file:///Users/oma9/Google%20Drive/Teaching/Courses/2021/Fall/STA%20610/Website/static/slides/data/spank.xlsx


Example: spanking data

#library(readxl)
spank <- readxl::read_excel("data/spank.xlsx")
dim(spank)

## [1] 111   8

head(spank)

## # A tibble: 6 × 8
##   study                   year outcome          between within     d    ll    ul
##   <chr>                  <dbl> <chr>              <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 Bean and Roberts (198…  1981 Immediate defia…       1      0 -0.74 -1.76  0.28
## 2 Day and Roberts (1983)  1983 Immediate defia…       1      0  0.36 -1.04  1.77
## 3 Minton, Kagan, and Le…  1971 Immediate defia…       0      1  0.34 -0.09  0.76
## 4 Roberts (1988)          1988 Immediate defia…       1      0 -0.08 -1.01  0.84
## 5 Roberts and Powers (1…  1990 Immediate defia…       1      0  0.1  -0.82  1.03
## 6 Burton, Maccoby, and …  1961 Low moral inter…       0      1  0.63  0.16  1.1

length(unique(spank$outcome))

## [1] 17

length(unique(spank$study))

## [1] 76
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Example: spanking data

unique(spank$outcome)

##  [1] "Immediate defiance"                   
##  [2] "Low moral internalization"            
##  [3] "Child aggression"                     
##  [4] "Child antisocial behavior"            
##  [5] "Child externalizing behavior problems"
##  [6] "Child internalizing behavior problems"
##  [7] "Child mental health problems"         
##  [8] "Child alcohol or substance abuse"     
##  [9] "Negative parent–child relationship"   
## [10] "Impaired cognitive ability"           
## [11] "Low self-esteem"                      
## [12] "Low self-regulation"                  
## [13] "Victim of physical abuse"             
## [14] "Adult antisocial behavior"            
## [15] "Adult mental health problems"         
## [16] "Adult alcohol or substance abuse"     
## [17] "Adult support for physical punishment"
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Spanking data

The effect size of interest in the meta-analysis is the standardized difference
in mean outcomes given by

where

This effect size is just a mean difference converted to standard deviation
units.

Most effect sizes will be fairly small -- for example, seeing an effect size of 1
would correspond to a 1 SD difference in the outcome between the spanking
groups.

Let's peek at the full data in a forest plot.

d = ,
μspanked − μnotspanked

σpooled

σpooled = √ .
(n1 − 1)σ2

1 + (n2 − 1)σ2
2

n1 + n2 − 2
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Spanking data

forestplot(rep(NA,length(spank$study)),spank$d,spank$ll,spank$ul,
           col = fpColors(lines="#990000", box="#660000", zero = "darkblue"))
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Spanking data

Note that the data on the previous slides do not provide us with standard
errors for the effect sizes ; however, we can calculate them based on the
CI's as

#library(tidyverse)
spank <-
  spank %>% 
  mutate(se = (ul - ll) / (2*1.96))
glimpse(spank)

## Rows: 111
## Columns: 9
## $ study   <chr> "Bean and Roberts (1981)", "Day and Roberts (1983)", "Minton, …
## $ year    <dbl> 1981, 1983, 1971, 1988, 1990, 1961, 1962, 1990, 2002, 2005, 19…
## $ outcome <chr> "Immediate defiance", "Immediate defiance", "Immediate defianc…
## $ between <dbl> 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,…
## $ within  <dbl> 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1,…
## $ d       <dbl> -0.74, 0.36, 0.34, -0.08, 0.10, 0.63, 0.19, 0.47, 0.14, -0.18,…
## $ ll      <dbl> -1.76, -1.04, -0.09, -1.01, -0.82, 0.16, -0.14, 0.20, -0.42, -…
## $ ul      <dbl> 0.28, 1.77, 0.76, 0.84, 1.03, 1.10, 0.53, 0.74, 0.70, 0.13, 2.…
## $ se      <dbl> 0.52040816, 0.71683673, 0.21683673, 0.47193878, 0.47193878, 0.…

d

SE = .
upper limit − lower limit

2 × 1.96
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Model

where

 is the effect estimate (possibly transformed) from study , and

 is the sampling error from study i (the sampling variance 
 estimated from each study is assumed known).

We will go Bayesian in this example. Let's put a

 prior on  and

 prior on 
as it would be really rare to have a summary  that
was very big on the effect size scale -- probably not the case for spanking
but maybe if we were measuring more severe physical abuse.

yi = θi + ei    θi = μ + bi   bi ∼ N(0, τ 2),

yi i

ei ∼ N(0, vi)
vi

Half-Cauchy(0, 1) τ

N(0, 1) μ d
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Model

#library(brms)
m.spank <- 
  brm(data = spank, family = gaussian,
      d | se(se) ~ 1 + (1 | study),
      prior = c(prior(normal(0, 1), class = Intercept),
                prior(cauchy(0, 1), class = sd)),
      iter = 4000, warmup = 1000, cores = 4, chains = 4,
      seed = 123, control = list(adapt_delta = 0.95))
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Results

print(m.spank)

##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: d | se(se) ~ 1 + (1 | study) 
##    Data: spank (Number of observations: 111) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Group-Level Effects: 
## ~study (Number of levels: 76) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.26      0.03     0.21     0.33 1.00     1839     4066
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     0.38      0.04     0.31     0.45 1.00     1164     2476
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.00      0.00     0.00     0.00   NA       NA       NA
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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Results

Our summary measure for  is 0.38, with 95% CrI=(0.31,0.45). Kids who were
spanked had on average scores 0.38 SD higher than kids who were not
spanked.

These outcomes were coded by authors in the same direction, so that larger
values of  imply more negative outcomes among kids who were spanked.

Note: presumably many of these studies are not randomized, and this
association does not imply causation.

d

d
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Multiple outcomes

One interesting aspect of the data is while we have 111 outcome effect sizes,
these come from only 76 separate studies -- some studies measured multiple
outcomes.

spank %>% 
  distinct(study) %>% 
  count()

## # A tibble: 1 × 1
##       n
##   <int>
## 1    76

We may wish to shrink outcomes of similar types together -- so let's fit a
cross-classified random effects model by adding a random effect for outcome
type.
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Updated model

m.spank.outcome <- 
  brm(data = spank, family = gaussian,
      d | se(se) ~ 1 + (1 | study) + (1 | outcome),
      prior = c(prior(normal(0, 1), class = Intercept),
                prior(cauchy(0, 1), class = sd)),
      iter = 4000, warmup = 1000, cores = 4, chains = 4,
      seed = 123, control = list(adapt_delta = 0.95))
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Updated results
print(m.spank.outcome)

##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: d | se(se) ~ 1 + (1 | study) + (1 | outcome) 
##    Data: spank (Number of observations: 111) 
##   Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
##          total post-warmup draws = 12000
## 
## Group-Level Effects: 
## ~outcome (Number of levels: 17) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.08      0.03     0.04     0.14 1.00     3920     6248
## 
## ~study (Number of levels: 76) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.25      0.03     0.20     0.32 1.00     2977     5059
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     0.36      0.04     0.28     0.44 1.00     2950     4853
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.00      0.00     0.00     0.00   NA       NA       NA
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

The estimates of  are quite similar to our previous ones. Looking at the
variance components, the study-to-study heterogeneity is larger than
heterogeneity across outcomes. We can explore further in a figure.

d
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Updated results

# we'll want this to label the plot
label <-
  tibble(tau   = c(.12, .3),
         y     = c(15, 10),
         label = c("sigma['outcome']", "sigma['study']"))

# wrangle
posterior_samples(m.spank.outcome) %>% 
  select(starts_with("sd")) %>% 
  gather(key, tau) %>% 
  mutate(key = str_remove(key, "sd_") %>% str_remove(., "__Intercept")) %>% 

  # plot
  ggplot(aes(x = tau)) +
  geom_density(aes(fill = key),
               color = "transparent") +
  geom_text(data = label,
            aes(y = y, label = label, color = label),
            parse = T, size = 5) +
  scale_fill_viridis_d(NULL, option = "B", begin = .5) +
  scale_color_viridis_d(NULL, option = "B", begin = .5) +
  scale_y_continuous(NULL, breaks = NULL) +
  xlab(expression(tau)) +
  theme(panel.grid = element_blank())
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Updated results

27 / 40



Updated results

We can also check whether spanking has similar effects on all the different
outcomes -- let's examine those more closely.

#library(tidybayes)
m.spank.outcome %>% 
  spread_draws(b_Intercept, r_outcome[outcome,]) %>%
  # add the grand mean to the group-specific deviations
  mutate(mu = b_Intercept + r_outcome) %>%
  ungroup() %>%
  mutate(outcome = str_replace_all(outcome, "[.]", " ")) %>% 

  # plot
  ggplot(aes(x = mu, y = reorder(outcome, mu),
             fill = reorder(outcome, mu))) +
  geom_vline(xintercept = fixef(m.spank.outcome)[1, 1],
             color = "grey33", size = 1) +
  geom_vline(xintercept = fixef(m.spank.outcome)[1, 3:4],
             color = "grey33", linetype = 2) +
  geom_halfeyeh(.width = .95, size = 2/3, color = "white") +
  scale_fill_viridis_d(option = "B", begin = .2) +
  labs(x = expression(italic("Cohen's d")),
       y = NULL) +
  theme(panel.grid   = element_blank(),
        axis.ticks.y = element_blank(),
        axis.text.y  = element_text(hjust = 0))
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Updated results

We see evidence that spanking may be particularly linked with child
externalizing behavior problems (again, this is chicken & egg -- we cannot
infer causation).
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Example: bladder cancer

There are many other interesting variations of this standard random effects
model.

For example, we may want to assign weights to the studies, especially when
we do not have that many studies to work with, and we think the studies vary
in quality.

In our next example, we have results from seven studies about the effect of
chlorinated water on the odds ratio of getting bladder cancer.

Five studies investigated a sample cancer deaths, while two studies looked at
cancer diagnoses.

There is likely natural (or maybe systematic) variability across these studies.
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Example: bladder cancer

Again, the goal is to combine the results of these studies to estimate the
"true" overall effect, incorporating information about the quality of study and
uncertainty of estimates of effect size.

Author Year AdjOR LCL UCL Method Quality

Cantor 1987 1.19 1.07 1.32 Logistic 78

Zierler 1988 1.60 1.20 2.10 M-H 71

Wilkins 1986 2.20 0.71 6.82 Logistic 61

Gottlieb 1982 1.18 0.95 1.45 Adj 49

Brenniman 1980 0.98 0.77 1.25 Adj 46

Young 1981 1.15 0.70 1.89 Logistic 45

Alvanja 1978 1.69 1.07 2.67 Adj 43
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Example: bladder cancer

author <- c("Cantor","Zierler","Wilkins","Gottlieb","Brenniman", "Young", "Alvanja")
year <- c(1987, 1988, 1986, 1982, 1980, 1981, 1978)
adjOR <- c(1.19, 1.60, 2.20, 1.18, .98, 1.15, 1.69)
LCL <- c(1.07, 1.2, .71, .95, .77, .7, 1.07)
UCL <- c(1.32, 2.10, 6.82, 1.45, 1.25, 1.89, 2.67)
method <- c("Logistic", "M-H", "Logistic", "Adj", "Adj", "Logistic", "Adj")
quality <- c(78, 71, 61, 49, 46, 45, 43)

meta <- data.frame(author, year, adjOR, LCL, UCL, method, quality)

#convert to log odds ratio so we can use a linear mixed effects model
meta$LN_adjOR <- round(log(meta$adjOR),2)

#also get the standard error on the log odds ratio scale
meta$SE_LNadjOR <- round((log(meta$UCL) - log(meta$adjOR))/1.96,2)
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Example: bladder cancer

Note: M-H is the Mantel-Haenszel method, which produces and approximate
logistic regression estimate.

The odds ratio was adjusted by some method other than logistic regression.

Each paper was rated for quality on the basis of selection of subjects,
measurement of and adjustment for confounding variables, exposure
assessment, and statistical analysis.

Interpret the score as the percentage of quality.

Easy to think about weighting each study using a function of its quality rating.
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Forest plot

forest(x=meta$LN_adjOR, sei=meta$SE_LNadjOR, slab=meta$author, top=0.5,
       xlab="Log Adjusted Odds Ratio")

All log-odds ratio estimates are above zero, with the exception of Brenniman.

Four of the seven confidence intervals include zero.
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Funnel plot

No immediate publication bias seems evident in the data. Difficult to
determine asymmetry in the plot because there are only seven studies.
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Random effects model with weights

Suppose

 is the log odds ratio for study , and

 is the weight given to study .

Then we can fit the following model

and estimate the overall effect as

yi i

wi i

yi = θi + ei;    θi = μ + bi

bi ∼ N(0, τ 2);    ei ∼ N(0, vi),

μ̂ = ;     with   V ar(μ̂) = .
∑i wiyi

∑i wi

∑i w
2
iV ar(yi)

(∑i wi)2
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Some options for the weights

The weights should obviously be related to the model but how should we
specify them? Here are some common options:

Option I: 

Each study is weighted by the sample variance with more weight on
studies with lower variance

Option II: 

Each study is weighted by quality with more weight on studies with
higher quality.

Option III: 

 is a modified quality measure, with more weight on studies with
high quality and low variance

The variances are estimated from the random effects model. Note: the
second option does not require any model.

wi = 1

τ 2+vi

wi = Qi

wi =
Q̂i

τ 2
i +vi

Q̂i
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Quality effects model for meta-analysis

Option III incorporates quality by adjusting the weight as well as
redistributing weights based on quality. (Doi, Thalib, 2009).

Note:

 is quality of study 

 is total number of studies.

Then, we have

Qi i

N

wi = τi =

τ̂ i = ∑
i

τi − τi is a quality adjustor

Q̂i = Qi + is the modified quality.

1

τ 2 + v2
i

wi − (wi ⋅ Qi)

N − 1

τ̂i

wi
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Final comments

Easy to implement all three options, especially using the metafor package.

This is a very short introduction to meta-analysis in R but is as much as we
are going to cover.

The metafor package allows for many kinds of models for meta-analysis.

When fitting Bayesian version, also use the brms package as always.

For a much more detailed material on meta-analysis (both classicial and
Bayesian), see this very wonderful hands-on guide!

Also, take a look at Section 15.5 of A. Solomon Kurz's statistical rethinking
ebook.
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What's next?
Move on to the readings for the next module!
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