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INTRODUCTION TO MISSING DATA

Missing data/nonresponse is fairly common in real data and applications.

For example,

Failure to respond to a survey question.

Subject misses some clinic visits out of all possible.

Only subset of subjects are asked certain questions.

The most common software packages often throw away all subjects with
incomplete data (can lead to bias and precision loss).
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INTRODUCTION TO MISSING DATA

Ideally, analysts should first decide on how to deal with missing data before
moving on to analysis.

One needs to make assumptions and ask tons of questions, for example,

why are the values missing?

what is the pattern of missingness?

what is the proportion of missing values in the data?

As a Bayesian, one could treat the missing values as parameters and estimate
them simultaneously with the analysis, but even in that case, one must still
ask the same questions.

Ask as many questions as possible to help you figure out the most plausible
assumptions!
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INTRODUCTION TO MISSING DATA

Simplest approach: complete/available case analyses -- delete cases with
missing data.

Often problematic because:

it is just not feasible sometimes (small  large  problem) -- when we
have a small number of observations but a large number of variables, we
simply can not afford to throw away data, even when the proportion of
missing data is small.

information loss -- even when we do not have the small , large 
problem, we still lose information when we delete cases.

biased results -- because the missing data mechanism is rarely random,
features of the observed data can be completely different from the
missing data.

More principled approach: impute the missing data (in a statistically proper
fashion) and analyze the imputed data.

n p

n p
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WHY SHOULD WE CARE?
Loss of power due to the the smaller sample size

can't regain lost power.

Any analysis must make an untestable assumption about the missing data

wrong assumption  biased estimates.

Some popular analyses with missing data get biased standard errors

resulting in wrong p-values and confidence intervals.

Some popular analyses with missing data are inefficient

so that confidence intervals are wider than they need be.

⇒
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WHAT TO DO: LOSS OF POWER

Approach by design:

minimize amount of missing data

good communications with participants, for example, patients in
clinical trial, participants in surveys and censuses, etc

follow up as much as possible; make repeated attempts using
different methods

reduce the impact of missing data

collect reasons for missing data

collect information predictive of missing values
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WHAT TO DO: ANALYSIS

A suitable method of analysis would:

make the correct (or plausible) assumption about the missing data

give an unbiased estimate (under that assumption)

give an unbiased standard error (so that p-values and confidence
intervals are correct)

be efficient (make best use of the available data)

However, we can never be sure about what the correct assumption is 
sensitivity analyses are essential!

⇒
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HOW TO APPROACH THE ANALYSIS?
Start by knowing:

extent of missing data

pattern of missing data (e.g. is  always missing whenever  is also
missing?)

predictors of missing data and of outcome

Principled approach to missing data:

identify a plausible assumption (through discussions between you as a
data scientist and your clients)

choose an analysis method that's valid under that assumption

Just because a method is simple to use does not make it plausible; some
analysis methods are simple to describe but have complex and/or implausible
assumptions.

X1 X2
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HANDLING MISSING DATA

Many analysts still impute missing values with a mean or some other fixed
(single) value (ignores uncertainty).

However, it is generally better to rely on methods that can incorporate the
uncertainty around imputed values (see Little and Rubin (2019)).

A common approach for doing this is multiple imputation (see mice package
in R).

Again, imputing missing data is quite natural in the Bayesian context since
each missing value is simply treated as an additional parameter.

In fact, multiple imputation basically relies on Bayesian ideas.

Thus, we will focus on handling missing data in Bayesian models.

If you would like to learn about multiple imputation, see the slides here and
here.
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PATTERN OF MISSING DATA

Missing data patterns may be monotone or nonmonotone.

In a monotone missing data pattern, observations missing on one variable are
a subset of those missing on another variable. That is, missingness is nested.

One example of monotone missing data is study dropout. If a subject drops
out of a study at time , then their observations will also be missing at times 

, , and so forth.

When missing data follow such a pattern, the group of responses is never
larger at a later follow-up time than it is at an earlier time.

Missing data are nonmonotone when missingness is not nested in this manner,
or is intermittent.

t
t + 1 t + 2
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TYPES OF NONRESPONSE (MISSING DATA)
Unit nonresponse: the individual has no values recorded for any of the
variables.

Item nonresponse: the individual has values recorded for at least one
variable, but not all variables.

Unit nonresponse vs item nonresponse

Variables

X1 X2 Y

Complete cases ✓ ✓ ✓

Item nonresponse ✓

✓ ❓

❓ ❓

❓ ✓

Unit nonresponse ❓ ❓ ❓
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STRATEGIES FOR HANDLING MISSING DATA

Item nonresponse:

use complete/available cases analyses

single imputation methods

multiple imputation

model-based methods

Unit nonresponse:

weighting adjustments

model-based methods (identifiability issues!).

We focus primarily on item nonresponse. Discussions on unit nonresponse are
beyond the scope of this course.

Building models for both unit and item nonresponse usually follows along the
lines of: https://arxiv.org/abs/1907.06145.
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MISSING DATA MECHANISMS

Data are said to be missing completely at random (MCAR) if the reason for
missingness does not depend on the values of the observed data or missing
data.

For example, suppose

you handed out a double-sided survey questionnaire of 20 questions to a
sample of participants;

questions 1-15 were on the first page but questions 16-20 were at the
back; and

some of the participants did not respond to questions 16-20.

Then, the values for questions 16-20 for those people who did not respond
would be MCAR if they simply did not realize the pages were double-sided;
they had no reason to ignore those questions.

This is rarely plausible in practice!
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MISSING DATA MECHANISMS

Data are said to be missing at random (MAR) if, conditional on the values of
the observed data, the reason for missingness does not depend on the missing
data.

Using our previous example, suppose

questions 1-15 include demographic information such as age and
education;

questions 16-20 include income related questions; and

once again, some participants did not respond to questions 16-20.

Then, the values for questions 16-20 for those people who did not respond
would be MAR if younger people are more likely not to respond to those
income related questions than old people, where age is observed for all
participants.

This is the most commonly assumed mechanism in practice!
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MISSING DATA MECHANISMS

Data are said to be missing not at random (MNAR or NMAR) if the reason for
missingness depends on the actual values of the missing (unobserved) data.

Continuing with our previous example, suppose again that

questions 1-15 include demographic information such as age and
education;

questions 16-20 include income related questions; and

once again, some of the participants did not respond to questions 16-20.

Then, the values for questions 16-20 for those people who did not respond
would be MNAR if people who earn more money are less likely to respond to
those income related questions than old people.

This is usually the case in real data, but analysis can be complex!
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MATHEMATICAL FORMULATION

Consider the multivariate data , where 
, for .

For now, we will assume the multivariate normal model as the sampling
model, so that each .

It is easy to extend the formulation to allow for predictors, and also within
the context of hierarchical modeling.

Suppose now that  contains missing values.

We can separate  into the observed and missing parts, that is, 
.

Then for each individual, .

Yi = (Y1, … , Yn)T

Yi = (Yi1, … ,Yip)T i = 1, … ,n

Yi = (Yi1, … ,Yip)T ∼ Np(θ, Σ)

Y

Y
Y = (Yobs, Ymis)

Yi = (Yi,obs, Yi,mis)
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MATHEMATICAL FORMULATION

Let

 index variables (where  already indexes individuals),

 when  is missing,

 when  is observed.

Here,  is known as the missingness indicator of variable  for person .

Also, let

 be the vector of missing indicators for person .

 be the matrix of missing indicators for everyone.

 be the set of parameters associated with .

Assume  and  are distinct.

j i

rij = 1 yij

rij = 0 yij

rij j i

Ri = (ri1, … , rip)T i

R = (R1, … , Rn)

ψ R

ψ (θ, Σ)
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MATHEMATICAL FORMULATION

MCAR:

MAR:

MNAR:

p(R|Y , θ, Σ, ψ) = p(R|ψ)

p(R|Y , θ, Σ, ψ) = p(R|Yobs, ψ)

p(R|Y , θ, Σ, ψ) = p(R|Yobs, Ymis, ψ)
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IMPLICATIONS FOR LIKELIHOOD FUNCTION

Each type of mechanism has a different implication on the likelihood of the
observed data , and the missing data indicator .

Without missingness in , the likelihood of the observed data is

With missingness in , the likelihood of the observed data is instead

Since we do not actually observe , we would like to be able to integrate
it out so we don't have to deal with it.

That is, we would like to infer  (and sometimes, ) using only the
observed data.

Yobs R

Y

p(Yobs|θ, Σ)

Y

p(Yobs, R|θ, Σ, ψ) = ∫ p(R|Yobs, Ymis, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

Ymis

(θ, Σ) ψ
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LIKELIHOOD FUNCTION: MCAR
For MCAR, we have:

For inference on , we can simply focus on  in the
likelihood function, since  does not include any .

That is, the missing-data mechanism here is ignorable for likelihood-based
inference.

p(Yobs, R|θ, Σ, ψ) = ∫ p(R|Yobs, Ymis, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

= ∫ p(R|ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

= p(R|ψ) ⋅ ∫ p(Yobs, Ymis|θ, Σ)dYmis

= p(R|ψ) ⋅ p(Yobs|θ, Σ).

(θ, Σ) p(Yobs|θ, Σ)
(R|ψ) Y
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LIKELIHOOD FUNCTION: MAR
For MAR, we have:

For inference on , we can once again focus on  in the
likelihood function. Again, the missing-data mechanism is ignorable.

However, there can be some bias if we do not account for ,
especially if  and  are not distinct.

Also, if we want to infer the missingness mechanism through , we would
need to deal with  anyway.

p(Yobs, R|θ, Σ, ψ) = ∫ p(R|Yobs, Ymis, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

= ∫ p(R|Yobs, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

= p(R|Yobs, ψ) ⋅ ∫ p(Yobs, Ymis|θ, Σ)dYmis

= p(R|Yobs, ψ) ⋅ p(Yobs|θ, Σ).

(θ, Σ) p(Yobs|θ, Σ)

p(R|Yobs, ψ)
ψ (θ, Σ)

ψ
p(R|Yobs, ψ)
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LIKELIHOOD FUNCTION: MNAR
For MNAR, we have:

The likelihood under MNAR cannot simplify any further.

In this case, we cannot ignore the missing data when making inferences about
 (nonignorable missing-data mechanism).

We must include the model for  and also infer the missing data .

p(Yobs, R|θ, Σ, ψ) = ∫ p(R|Yobs, Ymis, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

(θ, Σ)

R Ymis
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MISSING DATA MECHANISMS: HOW TO TELL IN
PRACTICE?
So how can we tell the type of mechanism we are dealing with?

In general, we don't know!!!

So, when conducting studies, it is very important to do everything possible to
collect data on the reasons for missing values or dropouts, so that the
investigator can determine the missing data mechanism.

That way, the decision can be made regarding the missing mechanism, and
analysis can properly account for the missing data mechanism if necessary.
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MISSING DATA MECHANISMS: HOW TO TELL IN
PRACTICE?
Rare (very!) that data are MCAR (unless planned beforehand)

Possible that data are MNAR

Compromise: assume data are MAR if we include enough variables in model
for the missing data indicator .

Again, we will mostly focus on talking about missing data in the context of
MCAR and MAR.

R
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COVARIATE-DEPENDENT MISSINGNESS

What happens when there are also covariates to consider?

Well, in general, missingness in the outcomes that depends on covariates is
not a problem, as long as you condition on the covariates.

As a very simple example, let  be a treatment group indicator, with 
 if  and  if .

Suppose that  is always observed but that some  are missing.

Write

so that .

Conditional on treatment group, the observed 's are a random subgroup of
all responses within a treatment group.

Xi

Yi ∼ N(μ0,σ2) Xi = 0 Yi ∼ N(μ1,σ2) Xi = 1

Xi Yi

Pr(Ri = 1|Xi = 0) = π0        Pr(Ri = 1|Xi = 1) = π1,

Pr(Ri = 1|Yi,Xi) = Pr(Ri = 1|Xi)

Yi
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COVARIATE-DEPENDENT MISSINGNESS

Then we can show that

and

but

However, because we are not interested in  averaged over treatment
groups, this is not a concern.

Conditional on , our missingness is MCAR, so inferences based on complete
data will be valid.

If we do not condition on , and  and  are related, then lack of
conditioning on  may introduce bias into the analysis.

E(Yi ∣ Ri = 1,Xi) = E(Yi ∣ Xi)

f(Yi ∣ Ri = 1,Xi) = f(Yi ∣ Xi)

E(Yi ∣ Ri = 1) ≠ E(Yi).

E(Yi)

Xi

Xi Xi Yi
Xi

26 / 57



ILLUSTRATION

Simple example using data that come with the MICE package in R.

Dataset from NHANES includes 25 cases measured on 4 variables.

Only 13 cases with complete data.

The four variables are

1. age (age group: 20-39, 40-59, 60+)

2. bmi (body mass index, in )

3. hyp (hypertension status: no, yes)

4. chl (total cholesterol, in )

Suppose the goal is to predict bmi by age, and chl.

kg/m2

mg/dL
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ILLUSTRATION

library(mice)
data(nhanes2)
dim(nhanes2)

## [1] 25  4

summary(nhanes2)

##     age          bmi          hyp          chl       
##  20-39:12   Min.   :20.40   no  :13   Min.   :113.0  
##  40-59: 7   1st Qu.:22.65   yes : 4   1st Qu.:185.0  
##  60-99: 6   Median :26.75   NA's: 8   Median :187.0  
##             Mean   :26.56             Mean   :191.4  
##             3rd Qu.:28.93             3rd Qu.:212.0  
##             Max.   :35.30             Max.   :284.0  
##             NA's   :9                 NA's   :10

str(nhanes2)

## 'data.frame':    25 obs. of  4 variables:
##  $ age: Factor w/ 3 levels "20-39","40-59",..: 1 2 1 3 1 3 1 1 2 2 ...
##  $ bmi: num  NA 22.7 NA NA 20.4 NA 22.5 30.1 22 NA ...
##  $ hyp: Factor w/ 2 levels "no","yes": NA 1 1 NA 1 NA 1 1 1 NA ...
##  $ chl: num  NA 187 187 NA 113 184 118 187 238 NA ...
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PATTERNS OF MISSING DATA

md.pattern(nhanes2)

5 patterns observed from  possible patterns23 = 8
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PATTERNS OF MISSING DATA

At the bottom: total number of missing values by variables.

On the right: number of variables missing in each pattern.

On the left: number of cases for each pattern.
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VISUALIZING PATTERNS OF MISSING DATA

library(VIM); library(lattice)
aggr(nhanes2,col=c("lightblue3","darkred"),numbers=TRUE,sortVars=TRUE,
     labels=names(nhanes2),cex.axis=.7,gap=3,
     ylab=c("Proportion missing","Missingness pattern"))

## 
##  Variables sorted by number of missings: 
##  Variable Count
##       chl  0.40
##       bmi  0.36
##       hyp  0.32
##       age  0.00
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VISUALIZING PATTERNS OF MISSING DATA

The marginplot function can be used to understand how missingness affects
the distribution of values on other variables.

Blue box plots summarize the distribution of observed data given the other
variable is observed.

Red box plots summarize the distribution of observed data given the other
variable is missing.

If data are MCAR, you expect the boxplots to be the same (hard to evaluate in
this small sample)

Let's look at the margin plot for the two continuous variables bmi and chl.
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VISUALIZING PATTERNS OF MISSING DATA

marginplot(nhanes2[,c("chl","bmi")],col=c("lightblue3","darkred"),cex.numbers=1.2,pch=19)
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VISUALIZING PATTERNS OF MISSING DATA

Interpretation of the numbers in red.

9 = number of observations with missingness in bmi

10 = number of observations with missingness in chl

7 = number of observations with missingness in both bmi and chl.

The scatterplot of blue points display the relationship between bmi and chl
when they are both observed (13 cases).

The red points indicate the amount of data used to generate the red
boxplots.
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IMPUTATION DURING MODEL FITTING

We will do this process a bit more carefully using the next example.

For now, the code for fitting the model to predict bmi by age, and chl using the
brms package and imputing the missing values within the sampler is as
follows.

bform <- bf(bmi | mi() ~ age * mi(chl)) +
   bf(chl | mi() ~ age) +
  set_rescor(FALSE)
fit_imp <- brm(bform, data = nhanes2,
               iter = 1e4, chains = 2, cores = 2,
               seed = 14, control=list(adapt_delta=0.99))
summary(fit_imp)

Note: this handles MAR, but clearly not MNAR/NMAR.
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RESULTS
bform <- bf(bmi | mi() ~ age * mi(chl)) +
  bf(chl | mi() ~ age) +
  set_rescor(FALSE)

fit_imp <- brm(bform, data = nhanes2,
               iter = 1e4, chains = 2, cores = 2,
               seed = 14, control=list(adapt_delta=0.99))
summary(fit_imp)

##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: bmi | mi() ~ age * mi(chl) 
##          chl | mi() ~ age 
##    Data: nhanes2 (Number of observations: 25) 
##   Draws: 2 chains, each with iter = 10000; warmup = 5000; thin = 1;
##          total post-warmup draws = 10000
## 
## Population-Level Effects: 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## bmi_Intercept         12.16      4.08     4.15    20.42 1.00     5993     5601
## chl_Intercept        168.88     14.73   139.36   197.59 1.00     7512     6812
## bmi_age40M59          32.78     13.09     7.48    59.41 1.00     4673     4770
## bmi_age60M99           4.89     11.12   -18.26    26.40 1.00     4295     5049
## chl_age40M59          33.19     24.37   -15.56    82.17 1.00     8228     7232
## chl_age60M99          57.99     28.04     2.43   113.03 1.00     7499     7295
## bmi_michl              0.10      0.02     0.05     0.14 1.00     5993     5667
## bmi_michl:age40M59    -0.19      0.07    -0.33    -0.06 1.00     4672     4783
## bmi_michl:age60M99    -0.07      0.05    -0.16     0.04 1.00     4305     5191
## 
## Family Specific Parameters: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_bmi     2.73      0.70     1.72     4.41 1.00     2838     5261
## sigma_chl    41.19      7.96    28.97    59.91 1.00     4640     5713
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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A SLIGHTLY MORE INTERESTING EXAMPLE

Researchers are interested in the hypothesis that primates with larger brains
produce milk with higher energy content so that brains can grow more
quickly.

We consider the outcome of energy content in milk (kcal of energy per g of
milk) and predictors including the average female body mass (kg) and the
percent of total brain mass that is neocortex mass.

The neocortex is the grey, outer part of the brain that is particularly
developed in mammals, especially primates.

Here, we will deal with missing values in the predictors; the response is fully
observed.
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MISSING DATA IN MILK STUDY

library(rethinking)
library(tidyverse)
data(milk)
d <- milk
library(VIM)
milk_aggr <- aggr(d,numbers=TRUE,sortVars=TRUE, labels=names(d),
                  cex.axis=.7, gap=3,
                  ylab=c("Proportion missing","Missingness Pattern"))
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MISSING DATA IN MILK STUDY
## 
##  Variables sorted by number of missings: 
##        Variable     Count
##  neocortex.perc 0.4137931
##           clade 0.0000000
##         species 0.0000000
##      kcal.per.g 0.0000000
##        perc.fat 0.0000000
##    perc.protein 0.0000000
##    perc.lactose 0.0000000
##            mass 0.0000000
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MISSING DATA IN MILK STUDY

Here we see that only one variable, the percent neocortex, is subject to
missingness, and it is missing 41% of the time (12 of 29 observations are NA).

This substantial fraction of missing data could lead to significant bias in
association estimates of interest.
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MISSING DATA IN MILK STUDY

Again, we can easily impute missing values of neocortex in our Bayesian
framework.

The only change to our model (assuming data are MCAR or MAR) is that we
will specify a distribution for percent neocortex (a covariate -- usually we do
not specify covariate distributions, though we did last time in the presence of
measurement error).

How do the observed values of percent neocortex look?

library(ggplot2)
ggplot(d, aes(x=neocortex.perc)) + geom_histogram(binwidth=6)
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MISSING DATA IN MILK STUDY

Ahh, histogram...looks normal-ish if you pick the right number of bins and has
an icky left tail if you don't.
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DATA MODEL

Let's think about the data model we would fit in the absence of missing data.
For today we're going to think about standard linear regression.

Easy to extend the ideas to more complicated models.

First, let's normalize both predictors and the outcome to obtain new variables
, , and  in order to put them on the same scale (a SD scale).

We will also take the log of mass (it is highly skewed) -- not to make it
normal, but just to pull in the tail values a bit.

d$M <- (log(d$mass)-mean(log(d$mass)))/sqrt(var(log(d$mass)))
d$N <- (d$neocortex.perc-
          mean(d$neocortex.perc,na.rm=T))/sqrt(var(d$neocortex.perc,na.rm=T))
d$K <- (d$kcal.per.g-mean(d$kcal.per.g))/sqrt(var(d$kcal.per.g))

Mi Ni Ki
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DATA MODEL

A reasonable data model is

Because we do not observe all values of , we declare a model for it, e.g.
under MCAR we might specify

Now all that remains is specifying prior distributions.

We can be simple and specify that  and 
.

Ki ∼ N(μi,σ
2)     μi = β0 + β1Ni + β2Mi.

Ni

Ni ∼ N(ν,σ2
ν).

βj, ν ∼ N(0, 1)
σ,σν ∼ HalfCauchy(0, 1)
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MODEL

detach(package:rethinking, unload = T)
#library(brms)

data_list <- list(kcal = d$K,neocortex = d$N, logmass   = d$M) #prep data

#specify model in advance just to simplify code later
b_model <- 
  # here's the primary `kcal` model
  bf(kcal ~ 1 + mi(neocortex) + logmass) + 
  # here's the model for the missing `neocortex` data 
  bf(neocortex | mi() ~ 1) + 
  # here we set the residual correlations for the two models to zero
  set_rescor(FALSE)

m1 <- brm(data = data_list, 
      family = gaussian,
      b_model,  #insert model here
      prior = c(prior(normal(0, 1), class = Intercept, resp = kcal),
                prior(normal(0, 1), class = Intercept, resp = neocortex),
                prior(normal(0, 1),  class = b, resp = kcal),
                prior(cauchy(0, 1),   class = sigma, resp = kcal),
                prior(cauchy(0, 1),   class = sigma, resp = neocortex)),
      iter = 1e4, chains = 2, cores = 2,
      seed = 14, control=list(adapt_delta=0.99))
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RESULTS

Examine all the parameter estimates.

summary(m1)

##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: kcal ~ 1 + mi(neocortex) + logmass 
##          neocortex | mi() ~ 1 
##    Data: data_list (Number of observations: 29) 
##   Draws: 2 chains, each with iter = 10000; warmup = 5000; thin = 1;
##          total post-warmup draws = 10000
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## kcal_Intercept          0.04      0.17    -0.28     0.37 1.00     8275     7209
## neocortex_Intercept    -0.06      0.22    -0.50     0.38 1.00     7415     6272
## kcal_logmass           -0.68      0.22    -1.12    -0.23 1.00     4034     6210
## kcal_mineocortex        0.65      0.26     0.13     1.15 1.00     3139     4927
## 
## Family Specific Parameters: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_kcal          0.81      0.14     0.58     1.12 1.00     4796     7019
## sigma_neocortex     1.00      0.17     0.73     1.40 1.00     6234     5734
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

You can also extract posterior draws of the missing values.
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RESULTS

Our results of primary interest are those from the energy (kcal) model.

Here we see that a one sd (on the log scale) greater than typical female BMI
is associated with an expected 0.68 (with ) standard
deviation decrease in energy content of milk.

A one sd greater percent neocortex is associated with an expected 0.65 (with 
) standard deviation increase in energy content of

milk.

Although there is a lot of uncertainty associated with our imputed neocortex
values, note that at least we're accounting for it properly in the modeling by
treating this as a quantity to be estimated (rather than an ad hoc solution
with poor properties, like simple mean imputation).

95%CI = (0.23, 1.12)

95%CI = (0.13, 1.15)
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RESULTS

What if we had instead done a complete case analysis?

If the data are MCAR, the complete case analysis would be unbiased though
inefficient.

b_model_cc <- bf(kcal ~ 1 + neocortex + logmass)
m.cc <- brm(data = data_list, family = gaussian,b_model_cc,
            prior = c(prior(normal(0, 1), class = Intercept),
                prior(normal(0, 1),  class = b),
                prior(cauchy(0, 1),   class = sigma)),
            iter = 1e4, chains = 2, cores = 2,seed = 14,
            control=list(adapt_delta=0.99))
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RESULTS
summary(m.cc)

##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: kcal ~ 1 + neocortex + logmass 
##    Data: data_list (Number of observations: 17) 
##   Draws: 2 chains, each with iter = 10000; warmup = 5000; thin = 1;
##          total post-warmup draws = 10000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     0.12      0.21    -0.29     0.54 1.00     5202     4513
## neocortex     0.87      0.31     0.24     1.46 1.00     3858     3981
## logmass      -0.88      0.28    -1.40    -0.30 1.00     3793     4142
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.84      0.17     0.58     1.25 1.00     4424     3833
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Our story here is broadly similar to that imputing data. Of course the actual
estimates differ somewhat.
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ADJUSTMENTS

We can perhaps improve the missing data model by expanding our model for
the neocortex percentage to include predictors in the mean.

For example, we could let

Let's fit this model and see if results change.

b_model <- bf(kcal ~ 1 + mi(neocortex) + logmass) + 
  bf(neocortex | mi() ~ 1 + logmass) + # here's the big difference
  set_rescor(FALSE)

# fit the model
m2 <- brm(data = data_list, family = gaussian, b_model,
          prior = c(prior(normal(0, 1), class = Intercept, resp = kcal),
                prior(normal(0, 1), class = Intercept, resp = neocortex),
                prior(normal(0, 1),  class = b, resp = kcal),
                prior(normal(0, 1),  class = b, resp = neocortex),
                prior(cauchy(0, 1),   class = sigma,     resp = kcal),
                prior(cauchy(0, 1),   class = sigma,     resp = neocortex)),
      iter = 1e4, chains = 2, cores = 2, seed = 14,
      control=list(adapt_delta=0.99))

Ni ∼ N(νi,σ
2
ν)   νi = βν + β1,νMi.
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NEW RESULTS

summary(m2)

##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: kcal ~ 1 + mi(neocortex) + logmass 
##          neocortex | mi() ~ 1 + logmass 
##    Data: data_list (Number of observations: 29) 
##   Draws: 2 chains, each with iter = 10000; warmup = 5000; thin = 1;
##          total post-warmup draws = 10000
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## kcal_Intercept          0.05      0.16    -0.26     0.37 1.00     8469     6243
## neocortex_Intercept    -0.06      0.16    -0.38     0.25 1.00     8649     7053
## kcal_logmass           -0.85      0.24    -1.30    -0.36 1.00     4527     4862
## neocortex_logmass       0.64      0.15     0.35     0.93 1.00     9656     7172
## kcal_mineocortex        0.81      0.27     0.25     1.32 1.00     3831     4068
## 
## Family Specific Parameters: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_kcal          0.79      0.13     0.57     1.09 1.00     5272     6229
## sigma_neocortex     0.70      0.12     0.50     0.99 1.00     5536     6131
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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NEW RESULTS

Here we see that mass is indeed predictive of the neocortex percentage.

Our results of primary interest are similar. Here we see that a one sd (on the
log scale) greater typical female BMI is associated with an expected 0.85
(with ) standard deviation decrease in energy content
of milk.

A one sd greater percent neocortex is associated with an expected 0.81 (with 
) standard deviation increase in energy content of

milk.

Overall conclusions are largely similar but we see the impact of improving the
missing data model in the interval for neocortex.

95%CI = (0.36, 1.30)

95%CI = (0.25, 1.32)
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SOME NOTES ON MNAR
As mentioned before, MNAR is actually very common.

This can be problematic because it is often hard to estimate a missing data
mechanism that depends on values that are not even observed!

Results in this case often depend strongly on the assumed model, and
sensitivity analyses are a useful tool for determining the consequences if your
assumed model is not correct.
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SOME NOTES ON MNAR
Consider a longitudinal clinical trial with interest in modeling health-related
quality of life, which is measured every three months by self-report on a
detailed multiple-item questionnaire (items might include ability to carry out
everyday activities, outlook, daily pain, etc.).

There may be a lot of missing data, even on subjects who do not drop out.

For example, if subjects who are sicker, or who are in more pain, do not
respond, then we may have nonignorable nonresponse.

In particular, nonresponse at time  is likely to be related to quality of life at
time , even conditional on quality of life at times .

j
j 1, ⋯ , j − 1
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SELECTION MODELS

A popular choice for handling data missing not at random in a Bayesian
framework is a selection model.

Another other is the pattern mixture model.

Selection models factor the joint distribution of the outcomes and
nonresponse pattern as

We specify both of these components completely and then base our
inferences on

integrating out the missing values.

f(Yi, Ri ∣ Xi, β, ψ) = f(Ri ∣ Yi, Xi, β, ψ)f(Yi ∣ Xi, β).

L(β, ψ ∣ Yi,obs, Ri),
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SELECTION MODELS

Selection models use a complete data model for  and then model the
probability of nonresponse conditional on the observed and unobserved
outcomes.

Selection models are nice because they directly model , the
target of our inference.

However, they can be computationally intractable in frequentist settings
(often involve difficult integrals and need complex versions of EM), results
may depend heavily on modeling assumptions, and identifiability can again be
difficult to characterize.

NOTE: complete case analysis assumptions are also usually unverifiable!

In a Bayesian framework, it is usually straightforward to add a model for .

Finally, again, it is easy to extend the same ideas to hierarchical models,
especially using brms.

Y

f(Yi ∣ Xi, β)

Ri
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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