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Categorical data

We've focused on hierarchical models for binary and continuous data.

Of course, our data may follow a wide variety of distributions.

Today we'll consider extensions to categorical data, as interpretations of
these models may be less straightforward than extensions to say count data.

Examples of categorical data: beverage order in a restaurant (water, tea,
coffee, soda, wine, beer, mixed drink) or your favorite Duke stats professor.

First we will review simple logistic regression, and then extend the ideas to
multiple outcomes.
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Recall logistic regression

Recall that for the simple logistic regression model, we had

yi | xi ∼ Bernoulli(πi);    log
πi

1 − πi
= β0 + β1xi

for each observation i = 1, …, n.

To get πi, we solve the logit equation above to get

πi =
eβ0+ β1xi

1 + eβ0+ β1xi

Consider Y = 0 a baseline category. Suppose Pr [yi = 1 | xi] = πi1 and 

Pr [yi = 0 | xi] = πi0. Then, the logit expression is essentially

log
πi1
πi0

= β0 + β1xi.

eβ1 is thus the (multiplicative) change in odds of y = 1 over the baseline y = 0
when increasing x by one unit.

( )

( )
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Multinomial logistic regression

Suppose we have a nominal-scale response variable Y with K categories, that
is, Y = 1, …, K.

First, for the random component, we need a distribution to describe Y.

A standard option for this is the multinomial distribution. The distribution
gives us a way to characterize

Pr [yi = 1] = π1,  Pr[yi = 2] = π2,  …,   Pr [yi = K] = πK,    where   
K

∑
k=1

πk = 1.

When there are no predictors, the best guess for each πk is the sample
proportion of cases with yi = k, that is,

π̂k =
1[yi = k]

n
.

When we have predictors, then we want

Pr [yi = 1 | xi] = πi1,   Pr [yi = 2 | xi] = πi2,  …,   Pr [yi = K | xi] = πiK.

4 / 33



Multinomial logistic regression

That is, we want the πk's to be functions of the predictors, like in logistic
regression.

Turns out we can use the same link function, that is the logit function, if we
set one of the levels as the baseline.

Pick a baseline outcome level, say Y = 1.

Then, the multinomial logistic regression is defined as a set of logistic
regression models for each probability πk, compared to the baseline, where 

k ≥ 2.

That is,

log
πik
πi1

= β0k + β1kxi1 + β2kxi2 + … + βpkxip;    k ≥ 2.

We therefore have K − 1 separate logistic regressions in this setup.

( )
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Multinomial logistic regression

The equation for each πik is given by

πik =
eβ0k+ β1kxi1+ β2kxi2+ … + βpkxip

1 + ∑K
k=2e

β0k+ β1kxi1+ β2kxi2+ … + βpkxip
   for   k ≥ 2

and

πi1 = 1 −
K

∑
k=2

πik.

Also, we can extract the log odds for comparing other pairs of the response
categories k and k ⋆ , since

log
πik
πik ⋆

= log πik − log πik ⋆

= log πik − log πi1 − log πik ⋆ + log πi1

= log πik − log πi1 − log πik ⋆ − log πi1

= log
πik
πi1

− log
πik ⋆

πi1
.

( ) ( ) ( )
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[ ( ) ( )] [ ( ) ( )]

( ) ( )
6 / 33



Multinomial logistic regression

Each coefficient has to be interpreted relative to the baseline.

Each β0k represents the baseline log-odds of general preference for Y = k over
Y = 1.

That is, for a continuous predictor,

β1k is the increase (or decrease) in the log-odds of Y = k versus Y = 1
when increasing x1 by one unit.

eβ1k is the multiplicative increase (or decrease) in the odds of Y = k versus
Y = 1 when increasing x1 by one unit.

Exponentiate confidence intervals from log-odds scale to get on the odds
scale.
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Multinomial logistic regression

Whereas, for a binary predictor,

β1k is the log-odds of Y = k versus Y = 1 for the group with x1 = 1,
compared to the group with x1 = 0.

eβ1k is the odds of Y = k versus Y = 1 for the group with x1 = 1, compared
to the group with x1 = 0.

Again, exponentiate confidence intervals from log-odds scale to get on the
odds scale.
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Model diagnostics

Use binned residuals like in logistic regression.

Each outcome level has its own raw residual. For each outcome level k,

make an indicator variable equal to one whenever Y = k and equal to zero
otherwise;

compute the predicted probability that Y = k for each record; and

compute the raw residual = indicator value - predicted probability.

For each outcome level, make bins of predictor values and plot average value
of predictor versus the average raw residual. Look for patterns.

You can still compute accuracy just as in the logistic regression model.

ROC on the other hand is not so straightforward; we can draw a different ROC
curve for each level of the response variable. We can also draw pairwise ROC
curves.
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Hierarchical extension

Consider the model:

log
πik
πi1

= β0k + β1kxi;    k ≥ 2.

Suppose we now have multiple measurements j per participant i in a study or
per group.

For example, we might ask about instructor preference for a list of courses.

How might we add random effects to this model?

( )
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Hierarchical extension

You don't want to assume that just because a participant has more of a
tendency to select category 2 than category 1, they will also have more of a
tendency to select category 3 than category 1.

Thus a single random intercept per person may be insufficient.

We want to allow k − 1 random intercepts per person.

That is,

log
πijk
πij1

= β0k + β1kxij + bik;    k ≥ 2,   bik ∼ N(0, σ2k).( )
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Example: clarity of inhaler instructions

Ezzet and Whitehead (1991) present data from an industry-sponsored clinical
trial designed to evaluate the clarity of two different sets of instructions for
using two different inhalers (the variable treat indicates the inhaler used and
is coded 0.5 and −0.5) to deliver an asthma drug.

Each participant rated each inhaler; the variable period indicates whether
the rating is from the first or second inhaler evaluated (in case participants
learned from the first evaluation).

The order of evaluation was randomized across subjects.

After using a device, the participant rated (variable name: rating) the
instruction leaflet as

1 = easy to understand;

2 = only clear after rereading;

3 = not very clear;

4 = confusing.
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Clarity of inhaler instructions

data(inhaler); head(inhaler)

##   subject rating treat period carry
## 1       1      1   0.5    0.5     0
## 2       2      1   0.5    0.5     0
## 3       3      1   0.5    0.5     0
## 4       4      1   0.5    0.5     0
## 5       5      1   0.5    0.5     0
## 6       6      1   0.5    0.5     0

#note, carry variable is a contrast to indicate possible carry over effects
#we won't use the variable
inhaler$treat <- as.factor(inhaler$treat)
inhaler$period <- as.factor(inhaler$period)
inhaler$rating <- as.ordered(inhaler$rating)
table(inhaler$treat)

## 
## -0.5  0.5 
##  286  286

table(inhaler$treat, inhaler$period)

##       
##        -0.5 0.5
##   -0.5  142 144
##   0.5   144 142
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Clarity of inhaler instructions

ggplot(data=inhaler, aes(x=rating)) +
geom_bar(stat="count")+facet_wrap(~treat)

We see equal numbers in each group; it seems that the inhaler insert labeled
0.5 may have been easier to understand.
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Clarity of inhaler instructions

ggplot(data=inhaler, aes(x=rating)) +
geom_bar(stat="count")+facet_wrap(~period)

Period does not seem to have much impact on the ratings.
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Model

Let's consider the model

log
πijk
πij1

= β0k + β1ktij + β2kpij + bik;    k = 2, 3, 4;

bik ∼ N(0, σ2k).

where

tij indicates the inhaler insert used by individual i in period j, and

pij indicates the corresponding period of measurement.

( )
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Implementation in R
#Note that these models can take a while to run
#They can also have relatively low ESS
#Default priors:
  #Half t_3 scale 10 on grand intercept, 
  #Half t_3, scale 10 on SD,
  #Uniform improper on slopes
m1 <- brm(rating ~ treat + period + (1|subject),
          data=inhaler,
          family=categorical(),
          control=list(adapt_delta=0.99),
          chains=3)
summary(m1)
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Results
##  Family: categorical 
##   Links: mu2 = logit; mu3 = logit; mu4 = logit 
## Formula: rating ~ treat + period + (1 | subject) 
##    Data: inhaler (Number of observations: 572) 
##   Draws: 3 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 3000
## 
## Group-Level Effects: 
## ~subject (Number of levels: 286) 
##                   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(mu2_Intercept)     1.29      0.28     0.78     1.84 1.00      559      980
## sd(mu3_Intercept)     2.09      1.24     0.16     4.83 1.01      255      446
## sd(mu4_Intercept)     1.07      0.86     0.03     3.29 1.01      345      533
## 
## Population-Level Effects: 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## mu2_Intercept    -0.37      0.20    -0.78     0.01 1.00     3213     2389
## mu3_Intercept    -4.17      1.50    -7.82    -2.22 1.00      327      543
## mu4_Intercept    -4.38      1.24    -7.66    -2.73 1.00      607      645
## mu2_treat0.5     -1.11      0.23    -1.57    -0.67 1.00     2218     1933
## mu2_period0.5     0.10      0.21    -0.31     0.50 1.00     4379     2028
## mu3_treat0.5     -3.03      1.05    -5.42    -1.32 1.00      879      899
## mu3_period0.5     0.29      0.68    -1.15     1.60 1.00     2239     1022
## mu4_treat0.5     -1.66      0.92    -3.76    -0.07 1.00     3099     1783
## mu4_period0.5     0.65      0.82    -0.88     2.35 1.00     2760     1516
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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Results

Here we see evidence that when using the inhaler and instructions labeled
0.5, participants are more likely than when using the other inhaler and
instructions (labeled -0.5), to select the easy rating than any of the other
options.

It's hard to estimate these variance components -- data are sparse for the
higher categories.
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Ordinal responses

Suppose the categories of our response variable has a natural ordering.

Let's start with data from Example 6.2.2 from Alan Agresti's An Introduction
to Categorical Data Analysis, Second Edition to demonstrate this.

This data is from a General Social Survey. Clearly, political ideology has a
five-point ordinal scale, ranging from very liberal to very conservative.

Political Ideology

Very Liberal Slightly Liberal Moderate Slightly Conservative Very Conservative

Female

Democratic 44 47 118 23 32

Republican 18 28 86 39 48

Male

Democratic 36 34 53 18 23

Republican 12 18 62 45 51
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Cumulative logits

When we have ordinal response with categories 1, 2, …, K, we still want to
estimate

Pr [yi = 1 | xi] = πi1,   Pr [yi = 2 | xi] = πi2,  …,   Pr [yi = K | xi] = πiK.

However, we need to use models that can reflect the ordering

Pr [yi ≤ 1 | xi] ≤ Pr [yi ≤ 2 | xi] ≤ … ≤ Pr [yi ≤ K | xi] = 1.

Notice that the ordering of probabilities is not for the actual marginal
probabilities, but rather the cumulative probabilities.

The multinomial logistic regression does not enforce this.

Instead, we can focus on building models for the cumulative logits, that is,
models for

log
Pr [yi ≤ k | xi]

Pr [yi > k | xi]
= log

πi1 + πi2 + … + πik
πi ( k+1 ) + πi ( k+2 ) + … + πiK

,    k = 1, …, K − 1.( ) ( )
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Proportional odds model

This leads us to the proportional odds model, written as:

log
Pr [yi ≤ k | xi]

Pr [yi > k | xi]
= β0k + β1xi1 + β2xi2 + … + βpxip,    k = 1, …, K − 1.

There is no need to model Pr [yi ≤ K] since it is necessarily equal to 1.

Notice that this model looks like a binary logistic regression in which we
combine the first k categories to form a single category (say 1) and the
remaining categories to form a second category (say 0).

Since β0 is the only parameter indexed by k, the K − 1 logistic regression

curves essentially have the same shapes but different "intercepts".

That is, the effect of the predictors is identical for all K − 1 cumulative log
odds.

This is therefore, a more parsimonious model (both in terms of estimation
and interpretation) than the multinomial logistic regression, when it fits the
data well.

( )
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Proportional odds model

The probabilities we care about are quite easy to extract, since each

Pr [yi = k | xi] = Pr [yi ≤ k | xi] − Pr [yi ≤ k − 1 | xi],    k = 2, …, K,

with Pr [yi ≤ 1 | xi] = Pr [yi = 1 | xi].

Let's focus first on a single continuous predictor, that is,

log
Pr [yi ≤ k | xi]

Pr [yi > k | xi]
= β01 + β1xi1,    k = 1, …, K − 1.

Here, β1 > 0, actually means that a 1 unit increase in x makes the larger

values of Y less likely.

This can seem counter-intuitive in many examples, thus, many books and
software packages often write

log
Pr [yi ≤ k | xi]

Pr [yi > k | xi]
= β01 − β1xi1,    k = 1, …, K − 1

instead. Always check the documentation of your function to ascertain the
representation of the model.

( )

( )
23 / 33



Proportional odds model

Suppose we have K = 5, β1 = 1.1, and (β01, β02, β03, β04) = (0.5, 1, 2, 2.5) in the
first representation

log
Pr [yi ≤ k | xi]

Pr [yi > k | xi]
= β0k + β1xi1,    k = 1, …, 4,

the cumulative probabilities would look like:

( )
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Proportional odds model

But with K = 5, and the same values β1 = 1.1, and 
(β01, β02, β03, β04) = (0.5, 1, 2, 2.5) in the second representation

log
Pr [yi ≤ k | xi]

Pr [yi > k | xi]
= β0k − β1xi1,    k = 1, …, 4,

the cumulative probabilities would look like:

( )

25 / 33



Proportional odds model

Take our example on political ideology for instance. Suppose we fit the model

log
Pr [ideologyi ≤ k | xi]

Pr [ideologyi > k | xi]
= β0k − β1xi1,    k = 1, …, 4,

where x is an indicator variable for political party, with x = 1 for Democrats
and x = 0 for Republicans.

Then,

For any k, β1 is the log-odds of a Democrat, when compared to a
Republican, of being more conservative than k compared to being more
liberal than k.

For any k, eβ1 is the odds of a Democrat, when compared to a Republican,
of being more conservative than k compared to being more liberal than k.

If β1 > 0, a Democrat's response is more likely than a Republican's response to

be in the conservative direction than in the liberal direction.

( )
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Hierarchical extension

Again consider the model

log
Pr [yi ≤ k | xi]

Pr [yi > k | xi]
= β0k − β1xi,    k = 1, …, K − 1.

Just as before, it is relatively straightforward to consider extensions to this
model.

Unlike before however, it makes sense to have one random intercept per
person, since we have ordinal responses.

So, we can write

log
Pr [yij ≤ k | xij]

Pr [yij > k | xij]
= β0k − β1xij + bi ;    k = 1, …, K − 1;

bi ∼ N(0, σ2).

( )

( ) [ ]
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Back to inhaler data

Recall that the outcome from the inhaler data is actually ordinal.

That is,

1 = easy to understand

2 = only clear after rereading

3 = not very clear

4 = confusing.

Thus, it makes sense to also consider a proportional odds model here.
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Model

We can then fit the model:

log
Pr [yij ≤ k | xij]

Pr [yij > k | xij]
= β0k − β1tij + β2pij + bi ;    k = 1, 2, 3;

bi ∼ N(0, σ2).

where

tij indicates the inhaler insert used by individual i in period j, and

pij indicates the corresponding period of measurement.

( ) [ ]
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Implementation in R
#BRMS follows the convention I mentioned earlier with the -ve slopes
#so need to be careful when interpreting the model
m2 <- brm(rating ~ treat + period + (1|subject),
          data=inhaler,
          family=cumulative(logit),
          control=list(adapt_delta=0.95))
summary(m2)
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Results
##  Family: cumulative 
##   Links: mu = logit; disc = identity 
## Formula: rating ~ treat + period + (1 | subject) 
##    Data: inhaler (Number of observations: 572) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Group-Level Effects: 
## ~subject (Number of levels: 286) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.19      0.24     0.70     1.65 1.00      698     1333
## 
## Population-Level Effects: 
##              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept[1]     0.15      0.18    -0.20     0.49 1.00     6442     3335
## Intercept[2]     3.29      0.31     2.70     3.93 1.00     2122     2595
## Intercept[3]     4.59      0.45     3.76     5.52 1.00     2739     3039
## treat0.5        -1.28      0.21    -1.71    -0.88 1.00     3305     2753
## period0.5        0.20      0.19    -0.17     0.58 1.00     8327     2579
## 
## Family Specific Parameters: 
##      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## disc     1.00      0.00     1.00     1.00   NA       NA       NA
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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Results

Here we see evidence that when using the inhaler and instructions labeled
0.5, participants are more likely than when using the other inhaler and
instructions (labeled -0.5) to select the "easy" rating than any of the other
options.

Since β1 < 0, that is −1.27, those with the 0.5 inhaler are more likely than to
be in the "easy" direction than in the "confusing" direction, those with the
-0.5 inhaler.

So we have, with the 0.5 inhaler, participants have 1.27 with CI: (0.88, 1.69)
times the odds of picking "easy" versus the other 3 categories.

They also then have 1.27 with CI: (0.88, 1.69) times the odds of picking the first
two categories, that is "easy or only clear after rereading", versus the other 2
categories. And so on...

Again, there's not much of a learning effect reflected in the period estimate.
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What's next?
Move on to the readings for the next module!
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