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Linear mixed effects model

Recall the standard representation of the linear mixed effects model is

where

 is a  vector of outcomes for subject 

 is a  design matrix of predictor variables corresponding to each
outcome measurement occasion for subject 

 is a  design matrix corresponding to the random effects for
subject 

 is a  vector of regression coefficients (fixed effects)

 is a  vector of random effects for subject 

 is a  vector of errors for subject 

Yi = Xiβ + Zibi + εi;    i = 1, … ,m
bi ⊥ εi     bi ∼ Nq(0,D)     εi ∼ Nni

(0,Ri),

Yi ni × 1 i

Xi ni × p
i

Zi ni × q
i

β p × 1

bi q × 1 i

εi ni × 1 i
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Bayesian inference for the linear mixed

effects model

Given our discussions on how complicated specifying  and  can be, it will
be very convenient to start with a simplified version of this model as we try
to understand our options.

Specifically, we will start by assuming that  and  are the same, and also
that , so that we can focus on .

Thus, we write

where . So that .

Here,  index groups, with group  having  observations, so
that the parameters  are fixed effects and the parameters  are random
effects.

D Ri

Xi Zi

Ri = σ2Ini
D

Yij = Xijβi + εij,      βi = β + bi,

εij
iid∼ N(0,σ2) ⊥ bi

iid∼ N(0,D) βi ∣ β ∼ N(β,D)

i = 1, … ,m i ni

β bi
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Priors

To make differentiating between  and  a bit less confusing, we will write 
.

That is, we have .

We already know that a conditionally-conjugate prior specification for two of
the parameters is given by

How about ?

One complication of course is that the  must be positive definite and
symmetric.

βi β
θ = β

βi ∣ θ ∼ N(θ,D)

θ ∼ N(μ0, Λ0),

σ2 ∼ IG( , ) .
ν0

2

ν0σ
2
0

2

D

D
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Review: positive definite and symmetric

"Positive definite" means that for all , .

Basically ensures that the diagonal elements of  (corresponding to the
marginal variances) are positive.

Also, ensures that the correlation coefficients for each pair of variables are
between -1 and 1.

Our prior for  should thus assign probability one to set of positive definite
matrices.

Analogous to the univariate case, the inverse-Wishart distribution is the
corresponding conditionally conjugate prior for  (multivariate
generalization of the inverse-gamma).

The STA 360/601/602 Hoff textbook covers the construction of Wishart and
inverse-Wishart random variables. We will skip the actual development.

x ∈ R
p xTDx > 0

D

D

D
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Review: Inverse-Wishart distribution

A random variable , where  is positive definite and 
, has pdf

where

 is the "degrees of freedom", and

 is a  positive definite matrix.

For this distribution, , for .

Hence,  is the scaled mean of the .

Σ ∼ IWp(η0,S0) Σ p × p

p(Σ)  ∝  |Σ| exp{− tr(S0Σ−1)} ,
−(η0+p+1)

2
1
2

η0 > p − 1

S0 p × p

E[Σ] = S0
1

η0 − p − 1
η0 > p + 1

S0 IWp(η0,S0)
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Review: Inverse-Wishart distribution

If we are very confident in a prior guess , for , then we might set

, the degrees of freedom to be very large, and

.

In this case, ,

and  is tightly (depending on the value of ) centered around .

If we are not at all confident but we still have a prior guess , we might set

, so that the  is finite.

Here,  as before, but  is only loosely centered around .

Σ0 Σ

η0

S0 = (η0 − p − 1)Σ0

E[Σ] = S0 = (η0 − p − 1)Σ0 = Σ0
1

η0 − p − 1
1

η0 − p − 1
Σ η0 Σ0

Σ0

η0 = p + 2 E[Σ] = S0
1

η0 − p − 1

S0 = Σ0

E[Σ] = Σ0 Σ Σ0
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Review: Wishart distribution

Just as we had with the gamma and inverse-gamma relationship in the
univariate case, we can also work in terms of the Wishart distribution
(multivariate generalization of the gamma) instead.

The Wishart distribution provides a conditionally-conjugate prior for the
precision matrix  in a multivariate normal model.

Specifically, if , then .

A random variable , where  has dimension , has
pdf

Here, .

Note that the STA 360/601/602 Hoff textbook writes the inverse-Wishart as 
. I prefer  instead. Feel free to use either

notation but try not to get confused.

Σ−1

Σ ∼ IWp(η0,S0) Φ = Σ−1 ∼ Wp(η0,S−1
0 )

Φ ∼ Wp(η0,S−1
0 ) Φ (p × p)

f(Φ)  ∝  |Φ| exp{− tr(S0Φ)} .
η0−p−1

2
1
2

E[Φ] = η0S0

IWp(η0,S−1
0 ) IWp(η0,S0)
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Back to the priors

For the full prior specification, we can then write

and

so that a simple Gibbs sampler can be used for posterior computation.

We will mostly rely on the brms package for simple specifications but it is
relatively easy to write your own Gibbs sampler here.

The following full conditionals should look very similar to those from the
homework.

θ ∼ N(μ0, Λ0),

D ∼ inverse-Wishart(η0,S0),

σ2 ∼ inverse-gamma ( , ) ,
ν0

2

ν0σ
2
0

2
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Full conditionals

where

and

βi ∣ yi,Xi, θ,D,σ2 ∼ N(μβi , Σβi),

Σβi = (D−1 + X ′
iXi)

−1

,
1

σ2

μβi = Σβi (D
−1θ + X ′

iyi) .
1

σ2
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Full conditionals

where

and
  is the vector average .

θ ∣ β1, … ,βm,D ∼ N(μθ, Λθ),

Λθ = (Λ−1
0 + mD−1)

−1
,

μθ = Λθ (Λ−1
0 μ0 + mD−1β̄) ,

β̄ ∑βi
1
m
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Full conditionals

where

with

D ∣ θ,β1, … ,βm ∼ IW (ηD,SD) ,

ηD = η0 + m;    SD = S0 + Sθ,

Sθ =
m

∑
i=1

(βi − θ)(βi − θ)′
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Full conditionals

where

with

σ2 ∣ β1, … ,βm ∼ IG( , ) ,
νn

2
νnσ

2
n

2

νn = ν0 +∑ni;    σ2
n = [ν0σ

2
0 + SSR] ,

1
νn

SSR =
m

∑
i=1

ni

∑
j=1

(yij − xijβi)2.
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Motivation for other covariance priors

While the inverse Wishart is a nice prior for symmetric matrices, computation
can be a challenge, expecially as the covariance matrix becomes large.

Why is modeling a covariance matrix difficult?

number of parameters may be quite large

matrix constrained to be nonnegative definite
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Motivation for other covariance priors

Another down side of the Wishart is that we must use the same df for all
elements, though in practice, we may have more information about some
components than others.

For example, we may believe in advance that the regression coefficients for
one predictor are fairly similar across groups, while we may have little
knowledge about similarity of coefficients for another predictor.

We cannot express these prior beliefs using the inverse Wishart distribution.
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Other covariance priors

A popular alternative approach is to decompose an arbitrary covariance
matrix  into a correlation matrix and a diagonal matrix of standard
deviations:

where  and .

Σ

Σ =

⎛
⎜
⎜
⎜
⎜
⎝

τ1 0 ⋯ 0
0 τ2 ⋯ 0

0 ⋮ ⋯ ⋮
0 ⋯ ⋯ τK

⎞
⎟
⎟
⎟
⎟
⎠

Ω

⎛
⎜
⎜
⎜
⎜
⎝

τ1 0 ⋯ 0
0 τ2 ⋯ 0

0 ⋮ ⋯ ⋮
0 ⋯ ⋯ τK

⎞
⎟
⎟
⎟
⎟
⎠

,

τk = √Σk,k Ωi,j =
Σi,j

τiτj
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Other covariance priors

This separation strategy yields nice interpretations for components, as
researchers are often more used to thinking of the standard deviations and
correlations than of covariances.

Typically, the priors on  are assumed to be independent of the prior on ,
though this could be incorporated through a prior on .

τk Ω
Ω ∣ τ
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Other covariance priors

In this parameterization, any reasonable prior for scale parameters can be
given to the components of the scale vector .

Popular choices include half-Cauchy or half-normal distributions, but log
normal or inverse gamma priors might also be used.

This approach is particularly attractive relative to the inverse Wishart, which
requires us to use the same df for all elements, though in practice, we may
wish to have more flexibility in dealing with tails of individual variance
components.

τ
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LKJ prior

A nice choice for the correlation matrix is the LKJ (Lewandowski-Kurowicka-
Joe) prior, which is like an extension of the beta distribution.

The LKJ distribution is commonly used for positive definite correlation
matrices, or equivalently for their Cholesky factors.

This prior is

which for  is the joint uniform distribution (note the marginals here are
not uniform but favor more mass around 0).

For , the density concentrates increasing mass around the identiy
(favoring lower correlation), and for , mass is increasingly spread
towards more extreme values.

For more information on the LKJ prior, see here.

LkjCorr(Ω ∣ η) ∝ |Ω|η−1,

η = 1

η > 1
η < 1
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https://distribution-explorer.github.io/multivariate_continuous/lkj.html


LKJ prior

Lets look at the LKJ density for a for a variety of values of the shape
parameter  (positive scalar).

First, some code for a bunch of colors.

#ok, McElreath has a thing for colors, so here's his choice of color library
# devtools::install_github("EdwinTh/dutchmasters")
#library(dutchmasters)
theme_pearl_earring <-
  theme(text       = element_text(color = "#E8DCCF", family = "Courier"),
        strip.text = element_text(color = "#E8DCCF", family = "Courier"),
        axis.text  = element_text(color = "#E8DCCF"),
        axis.ticks = element_line(color = "#E8DCCF"),
        line       = element_line(color = "#E8DCCF"),
        plot.background   = element_rect(fill = "#100F14", color = "transparent"),
        panel.background  = element_rect(fill = "#100F14", color = "#E8DCCF"),
        strip.background  = element_rect(fill = "#100F14", color = "transparent"),
        panel.grid = element_blank(),
        legend.background = element_rect(fill = "#100F14", color = "transparent"),
        legend.key        = element_rect(fill = "#100F14", color = "transparent"),
        axis.line = element_blank())

η
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LKJ prior

Now, the actual code for the densities.

#library(rethinking)
n_sim <- 1e5
set.seed(13)

r_1 <- rlkjcorr(n_sim, K = 2, eta = 1) %>%
  as_tibble()
r_2 <- rlkjcorr(n_sim, K = 2, eta = 2) %>%
  as_tibble()
r_4 <- rlkjcorr(n_sim, K = 2, eta = 4) %>%
  as_tibble()

ggplot(data = r_1, aes(x = V2)) +
  geom_density(color = "transparent", fill = "#DCA258", alpha = 2/3) +
  geom_density(data = r_2,
               color = "transparent", fill = "#FCF9F0", alpha = 2/3) +
  geom_density(data = r_4,
               color = "transparent", fill = "#394165", alpha = 2/3) +
  geom_text(data = tibble(x     = c(.83, .62, .46),
                          y     = c(.54, .74, 1),
                          label = c("eta = 1", "eta = 2", "eta = 4")),
            aes(x = x, y = y, label = label),
            color = "#A65141", family = "Courier") +
  scale_y_continuous(NULL, breaks = NULL) +
  xlab("correlation") +
  theme_pearl_earring
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LKJ prior
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Example: coffee robot

We use an example from McElreath's book Statistical Rethinking about a
coffee robot.

While these are simulated data, they provide an interesting application as
well as great code should you need to simulate hierarchical data in the
future!

Suppose we have a coffee-making robot that moves among cafes to order
coffee and record the wait time.

The robot also records the time of day of the visit because the average wait
time in the morning tends to be longer than in the afternoon due to the fact
that the cafes are busier in the mornings.

The robot learns more efficiently about wait times when it pools information
across different cafes.
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Example: coffee robot

We can use varying intercepts to pool information across coffee shops.

Coffee shops vary in average wait times due to a number of factors (e.g.,
barista skill, number of baristas).

Coffee shops also vary in differences between morning and afternoon.

Varying intercepts for cafes and "slopes" for the afternoon effect make
for a reasonable model.

In this example we focus on the cafe as a grouping factor.
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Example: coffee robot

Model:

yij = β0,i + β1,iAij + εij

β0,i = β0 + b0,i   β1,i = β1 + b1,i

εi
iid∼ N(0,σ2I)   ⊥   bi

iid∼ N(0,D),    D = (
τ0 0
0 τ1

)Υ(
τ0 0
0 τ1

)
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Example: coffee robot

Priors:

β0 ∼ N(0, 10)       β1 ∼ N(0, 10)

σ ∼ Half Cauchy(0, 1)

τ0 ∼ Half Cauchy(0, 1)    τ1 ∼ Half Cauchy(0, 1)

Υ = (
1 υ

υ 1
) ∼ LKJcorr(2)
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Data

#library(tidyverse)
#library(brms)
#example from McElreath with thanks to Solomon Kurz for the BRMS translation
a       <-  3.5  # average morning wait time
b       <- -1    # average difference afternoon wait time
sigma_a <-  1    # std dev in intercepts
sigma_b <-  0.5  # std dev in slopes
rho     <- -0.7   # correlation between intercepts and slopes

# combine the terms above
mu     <- c(a, b)
sigmas <- c(sigma_a, sigma_b)          # standard deviations
rho    <- matrix(c(1, rho,             # correlation matrix
                   rho, 1), nrow = 2)

# now matrix multiply to get covariance matrix
sigma <- diag(sigmas) %*% rho %*% diag(sigmas)
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Data

# how many cafes would you like?
n_cafes <- 20

set.seed(13)  # used to replicate example
vary_effects <- 
  MASS::mvrnorm(n_cafes, mu, sigma) %>% 
  data.frame() %>% 
  set_names("a_cafe", "b_cafe")

head(vary_effects)

##     a_cafe     b_cafe
## 1 2.917639 -0.8649154
## 2 3.552770 -1.6814372
## 3 1.694390 -0.4168858
## 4 3.442417 -0.6011724
## 5 2.289988 -0.7461953
## 6 3.069283 -0.8839639

#plot of cafe-specific intercepts and slopes
vary_effects %>% 
  ggplot(aes(x = a_cafe, y = b_cafe)) +
  geom_point(color = "#80A0C7") +
  geom_rug(color = "#8B9DAF", size = 1/7) +
  theme_pearl_earring
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Data

Here we see a negative correlation in our intercepts and slopes. Remember
these are the "true" parameters rather than our data.
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Data

n_visits <- 10
sigma    <-  0.5  # std dev within cafes

set.seed(13)  # used to replicate example
d <-
  vary_effects %>% 
  mutate(cafe      = 1:n_cafes) %>% 
  expand(nesting(cafe, a_cafe, b_cafe), visit = 1:n_visits) %>% 
  mutate(afternoon = rep(0:1, times = n() / 2)) %>% 
  mutate(mu        = a_cafe + b_cafe * afternoon) %>% 
  mutate(wait      = rnorm(n = n(), mean = mu, sd = sigma))
d %>%
  head()

## # A tibble: 6 × 7
##    cafe a_cafe b_cafe visit afternoon    mu  wait
##   <int>  <dbl>  <dbl> <int>     <int> <dbl> <dbl>
## 1     1   2.92 -0.865     1         0  2.92  3.19
## 2     1   2.92 -0.865     2         1  2.05  1.91
## 3     1   2.92 -0.865     3         0  2.92  3.81
## 4     1   2.92 -0.865     4         1  2.05  2.15
## 5     1   2.92 -0.865     5         0  2.92  3.49
## 6     1   2.92 -0.865     6         1  2.05  2.26
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Model

Now we switch to the brms package and fit the model.

detach(package:rethinking, unload = T)
#library(brms)

 b13.1 <- 
  brm(data = d, family = gaussian,
      wait ~ 1 + afternoon + (1 + afternoon | cafe),
      prior = c(prior(normal(0, 10), class = Intercept),
                prior(normal(0, 10), class = b),
                prior(cauchy(0, 1), class = sd),
                prior(cauchy(0, 1), class = sigma),
                prior(lkj(2), class = cor)),
      iter = 5000, warmup = 2000, chains = 2, cores = 2,
      seed = 13)
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Posterior summaries

Let's compare posterior correlation of random effects to the prior.

post <- posterior_samples(b13.1)

post %>%
  ggplot(aes(x = cor_cafe__Intercept__afternoon)) +
  geom_density(data = r_2, aes(x = V2),
               color = "transparent", fill = "#EEDA9D", alpha = 3/4) +
  geom_density(color = "transparent", fill = "#A65141", alpha = 9/10) +
  annotate("text", label = "posterior", 
           x = -0.35, y = 2.2, 
           color = "#A65141", family = "Courier") +
  annotate("text", label = "prior", 
           x = 0, y = 0.9, 
           color = "#EEDA9D", alpha = 2/3, family = "Courier") +
  scale_y_continuous(NULL, breaks = NULL) +
  xlab("correlation") +
  theme_pearl_earring
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Posterior summaries
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Posterior summaries

It takes a lot of code to generate the following figures, which illustrate
shrinkage in this model.

If you're interested, let me know and I can make it available to you, or the
McElreath book, or Solomon's website.

These figures examine random intercepts vs random slopes as well as the
morning and afternoon wait times on the original scale (minutes).

Blue dot: unpooled estimate

Red dot: pooled estimate

Note shrinkage is toward the center of the ellipse.
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Posterior summaries
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Posterior summaries
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What's next?
Move on to the readings for the next module!
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