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Linear mixed effects models

Linear mixed effects models extend standard linear models to allow for
random effects. They overlap with hierarchical models in many ways.

You can think about the (linear) hierarchical models we have covered so far
as special cases .

We introduce the framework of the linear mixed effects model in the context
of longitudinal data.

Something to keep in mind: the following are all related.

mixed models

mixed effects models

random effects models

two-stage models

hierarchical models

multilevel models

Laird and Ware models
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Mixed effects models for longitudinal

data

In (linear) mixed effects models, the response depends on the usual "fixed"
population parameters , as well as subject-specific random effects.

We have seen this already in context of the random effects ANCOVA model.

When dealing with longitudinal data, mixed effecs models are especially
convenient when there are no set times for observation of outcomes, which
makes it challenging to estimate a covariance matrix across time in a
multivariate setting.

NOTE: In the setting of longitudinal data, indices are typically the opposite of
those in the regular multilevel modeling setting.

That is,  often denotes the response at time  for subject . This is
standard notation in the context of mixed effects models.

This is just notation, so we can switch back and forth easily as needed.

β

Yij j i
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Mixed effects models for longitudinal

data

Because of missing data, differential timing, and other factors,  may
depend on  and .

Mixed effects models handle such structures naturally.

We have already a bit of this with the random effect models we have seen so
far.

In addition, using random effects in the model is one way to model the
covariance structure as a function of time.

That said, there are many other ways of handling these kinds of "complicated"
covariance structures, so a mixed effects model might not be the way to go
when, say, a dynamic model would be a much better fit.

Var(Yij)
i j
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Longitudinal versus cross-sectional data

In a longitudinal study, subjects are measured repeatedly over time.

When these are the exact same "subjects" and variables over time, we have a
panel study.

We can think of these as multilevel data, with repeated measures on each
individual subject (so the subject is the group).

In a cross-sectional study, a single outcome is measured for each individual,
though individuals may belong to different cohorts.
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Longitudinal versus cross-sectional data

6 / 38



Longitudinal versus cross-sectional data

A key feature of the longitudinal design on the previous slide is that the same
cohort of students, recruited in 6th grade, is followed until 12th grade
(except in the case of dropouts).

The cross-sectional study can be completed at one point in time, with the
6th, 9th, and 12th grade cohorts tested concurrently.

In the cross-sectional study depicted, it is not possible to determine whether
scores in 12th grade are better because for example, the teachers are better,
students have learned more in earlier grades, the weaker students dropped
out, etc.

A longitudinal design gives us much more information to assess the "reasons"
for change.
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Longitudinal versus cross-sectional data

In the cross-sectional design, we do not have any repeated scores from the
same student.

Often, all observations may be treated as independent.

In a longitudinal analysis, we can investigate

changes over time within individuals

differences among individuals in their response levels

Longitudinal data analysis requires special statistical methods (e.g., a
multilevel model) because the observations on any one subject tend to be
positively correlated.
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Orthodontics data

Changes in the distance (measured in mm) from the center of the pituitary
gland to the pterygomaxillary fissure are important in orthodontic therapy.
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Orthodontics data
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Pothoff and Roy (1964) study

This distance was measured at ages 8, 10, 12, and 14 in 27 children (16 boys
and 11 girls)

Questions of interest include the following:

Does distance change over time?

What is the pattern of change?

Is the pattern of change different for boys and girls? How?

data(Orthodont,package="nlme")
head(Orthodont); dim(Orthodont)

## Grouped Data: distance ~ age | Subject
##   distance age Subject  Sex
## 1     26.0   8     M01 Male
## 2     25.0  10     M01 Male
## 3     29.0  12     M01 Male
## 4     31.0  14     M01 Male
## 5     21.5   8     M02 Male
## 6     22.5  10     M02 Male

## [1] 108   4

Orthodont$Sex <- relevel(Orthodont$Sex,ref="Female")
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Pothoff and Roy (1964) study

What kind of model might be appropriate?
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Modeling growth

To start, we might consider a linear model given by

where  indexes the child and  indexes time , and in this case, 
 as each child was measured at , , , and 
 years.

Recall our research questions:

Does distance change over time? (main effect of age)

What is the pattern of change? (linear age, categorical?)

Is the pattern of change different for boys and girls? How? (age by gender
interaction)

We might specify

Yij = β0i + β1itij + εij,

i j j = 1, 2, 3, 4
tij = tj t1 = 8 t2 = 10 t3 = 12
t4 = 14

Yij = β0i + β1itj + εij

β0i = α00 + α01I(male)i + b0i

β1i = α10 + α11I(male)i + b1i.
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Linear mixed effects model

The standard representation for a linear mixed effects model is

where

 is a  vector of outcomes for subject 

 is a  design matrix of predictor variables corresponding to each
outcome measurement occasion for subject 

 is a  design matrix corresponding to the random effects for
subject 

 is a  vector of regression coefficients (fixed effects)

 is a  vector of random effects for subject 

 is a  vector of errors for subject 

Yi = Xiβ + Zibi + εi

bi ⊥ εi     bi ∼ Nq(0,D)     εi ∼ Nni
(0,Ri),

Yi ni × 1 i

Xi ni × p
i

Zi ni × q
i

β p × 1

bi q × 1 i

εi ni × 1 i
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Linear mixed effects model

In this model,

and

Here,  characterizes among-unit variation.

When the columns of  are a subset of the columns of , we can interpret 
 as the difference between subject 's conditional mean response

trajectory and the mean response trajectory in the population (that is,  has
mean zero).

Example: in a random intercept model,  is a  vector of 1's.

E(Yi) = Xiβ

Var(Yi) = Var(Zibi + εi) = ZiDZ ′
i

+ Ri.

Zi

Zi Xi

Zibi i
bi

Zi ni × 1
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Linear mixed effects model

The subject-specific or conditional mean of  given  is

The marginal or populatoin-averaged mean of , averaging over the
distribution of random effects  is given by

since  has mean zero.

Yi bi

E(Yi ∣ bi) = Xiβ + Zibi.

Yi
bi

E(E(Yi ∣ bi)) = E(Xiβ + Zibi) = Xiβ,

bi
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Linear mixed effects model

If we have only a random intercept  and  and 
, then

We have already seen this.

This form is called compound symmetry or exchangeable and represents the
simplest possible example of a mixed effects model.

b0i Var(b0i) = τ 2

Var(εi) = σ2I

Var(Yi) = τ 2ZiZ
′
i

+ σ2I =

⎛
⎜
⎜
⎜
⎜
⎝

σ2 + τ 2 τ2 … τ 2

τ 2 σ2 + τ 2 … τ 2

⋮ … … ⋮

τ 2 … … σ2 + τ 2

⎞
⎟
⎟
⎟
⎟
⎠

.
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Choices for 
The most common choice for the within-subject variation, , is 

.

This implies that the error variance is the same at all time points and that
there is no autocorrelation in the random errors.

This may be appropriate if the main source of within-subject variation is
measurement error.

We could, however, choose more elaborate structures for .

For example, we may feel  depends on the value of a covariate or that an
autoregressive structure is needed (observations made closer together in time
may be more highly correlated than observations further apart in time).

This is a distinction between standard multilevel models that typically assume
 and the linear mixed effects model, which allows a more general

error variance.

Ri

Var(εi) = Ri

σ2Ini

Ri

Ri

Ri = σ2Ini
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Example: children nested in families

Consider the model

where  families (groups) and  children within
family .

yij = β0,i + β1,ixij + εij

β0,i = β0 + b0,i   β1,i = β1 + b1,i

(
b0,i

b1,i
)

iid∼ N ((
0
0
) ,(

τ11 τ12

τ12 τ22
)) ⊥ εij

iid∼ N(0,σ2),

i = 1, … ,m j = 1, … ,ni

i
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Exercises

Write this model as a linear mixed effects model of the form

clearly specifying the elements of , ,  and  and the distributional
assumptions on  and .

Derive the general form of the correlation between:

two children in different families  and , 

two children in the same family , 

Tip: for the second part, you can either use the formula from a few slides
back for , or you can derive from first principles as the covariance of
two linear combinations of random variables.

Yi = Xiβ + Zibi + εi,

Yi Xi Zi β
bi εi

i i′ Corr(Yij,Yi′j′)

i Corr(Yij,Yij′)

Var(Yi)
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Dental data again

In the dental data, the kids are all measured at age 8, 10, 12, and 14 (Really?
Did they all come in for the study on their birthdays?).

Probably the kids were measured within a few months of each age, and
maybe some were pretty late.

How can this model accommodate unequal or unbalanced measurement
times?
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Choices for 
 could be different for different groups if there is strong

evidence different treatment conditions have a nonnegligible effect on
variation as well as on the mean.

Typically  is unstructured.

Intercepts and slopes may tend to be large or small together, so that children
with steeper slopes tend to "start out" larger at birth -- or the opposite may
be true -- perhaps small kids tend to grow faster in order to catch up.

Either way, it's generally unwise to specify  as diagonal.

D
Var(bi) = D

D

D

22 / 38



Choices for 
In a random intercepts and slopes model, we may have

 (homogeneous variances) is generally unrealistic because the
intercept is on the same measurement scale as , but the slope is on the
scale of "response increment per unit change in predictor."

So unstructured  is usually the way to go.

D

Var(bi) = Var(
b0i

b1i
) = D = (

d11 d12

d12 d22
) .

d11 = d22
Y

D
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Choices for 
One problem with trying to get "too fancy" in modeling  and  is that we
may run into identifiability issues.

For example, it is not possible in a frequentist model to estimate both
unstructured  and unstructured  as the number of free parameters in
those matrices exceeds the number of free components in the matrix 

.

For example, suppose  contains 4 response measures for each participant in
a study, with each participant measured at the same 4 times.

 is a  matrix and has  unique elements.

How many covariance parameters would we need to estimate if we assume 
 is unstructured in a model with random intercepts and slopes?

D
D Ri

D Ri

Var(Yi)

Yi

Cov(Yi) = Σ 4 × 4 = 10
n(n+1)

2

Ri

24 / 38



Dental data again

Translating our model from the multilevel formulation

to a standard mixed model formulation (just rewriting and changing notation)
we have

where

Let's fit and interpret this model!

Yij = β0i + β1itj + εij

β0i = α00 + α01I(male)i + b0i

β1i = α10 + α11I(male)i + b1i.

Yij = β0 + β1I(male)i + β2tj + β3I(male)itj + b0i + b1itj + εij

(
b0i

b1i
) iid∼ N (0,(

d11 d12

d12 d22
)) ⊥ εij

iid∼ N(0,σ2).
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Dental analysis

m1 <- lmer(distance~ Sex*age+(1+age|Subject),data=Orthodont)
summary(m1)

## Linear mixed model fit by REML ['lmerMod']
## Formula: distance ~ Sex * age + (1 + age | Subject)
##    Data: Orthodont
## 
## REML criterion at convergence: 432.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1694 -0.3862  0.0070  0.4454  3.8490 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  Subject  (Intercept) 5.77449  2.4030        
##           age         0.03245  0.1801   -0.67
##  Residual             1.71663  1.3102        
## Number of obs: 108, groups:  Subject, 27
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  17.3727     1.2281  14.147
## SexMale      -1.0321     1.5953  -0.647
## age           0.4795     0.1037   4.625
## SexMale:age   0.3048     0.1347   2.263
## 
## Correlation of Fixed Effects:
##             (Intr) SexMal age   
## SexMale     -0.770              
## age         -0.880  0.678       
## SexMale:age  0.678 -0.880 -0.770
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Dental analysis

We'll get more into diagnostics shortly, but here's a start.

library(lattice)
#basic qqplot
qqmath(resid(m1))
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Dental analysis

#standardized residuals y-Xbeta-Zb versus fitted values by gender
#standardized by the estimate of sigma=sqrt(var(epsilon))
plot(m1,resid(.,scaled=TRUE)~fitted(.)|Sex,abline=0)
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Dental analysis

## boxplots of residuals by Subject
plot(m1, Subject ~ resid(., scaled=TRUE))
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Dental analysis

## observed versus fitted values by Subject
## fitted value is X_ibeta+Z_ib_i
plot(m1, distance ~ fitted(.) | Subject, abline = c(0,1))
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Dental analysis

## residuals by age, separated by Subject
plot(m1, resid(., scaled=TRUE) ~ age | Sex, abline = 0)
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Dental analysis

m1F <- fortify.merMod(m1)
# plot of raw residuals, use .scresid for scaled
ggplot(m1F, aes(age,.resid)) + geom_point(colour="blue") + facet_grid(.~Sex) +
  geom_hline(yintercept=0)+geom_line(aes(group=Subject),alpha=0.4) +
  geom_smooth(method="loess")

## `geom_smooth()` using formula 'y ~ x'
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Model results

Note the t-statistic for the interaction is a pretty good size, so we'll keep that
in the model.

Let's pick off intercepts and slopes for girls and boys along with 95%
confidence intervals.

#int girl, int boy, slope girl, slope boy
cmat <- cbind(c(1,0,0,0),c(1,1,0,0),c(0,0,1,0),c(0,0,1,1))
girlboyintslope <- t(cmat)%*%fixef(m1)
gbvcov <- t(cmat)%*%vcov(m1)%*%cmat
cbind(girlboyintslope-1.96*sqrt(diag(gbvcov)),
      girlboyintslope,girlboyintslope+1.96*sqrt(diag(gbvcov)))

##            [,1]       [,2]       [,3]
## [1,] 14.9657456 17.3727273 19.7797089
## [2,] 14.3448613 16.3406250 18.3363887
## [3,]  0.2763001  0.4795455  0.6827908
## [4,]  0.6158529  0.7843750  0.9528971
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Model results

est <- data.frame(sl = girlboyintslope[3:4,], 
                 int = girlboyintslope[1:2,], 
                 SEX = c('Female','Male'))
ggplot(Orthodont, aes(x=age,y=distance,color=Sex,group=Subject)) +
  geom_point(alpha=0.8) + geom_line(alpha=0.3) +
  geom_abline(data=est, aes(intercept=int, slope=sl, color=SEX)) +
  xlab("Age (years)") + ylab("Distance (mm)") + 
  ggtitle("Observed Data and Estimated Gender-Specific Means")
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Model results

Here, we examine the gender-specific mean trends over time from the model
along with the observed data points.
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Model results

Now we look at individual-specific and mean estimated trajectories.

boyint <- coef(m1)$Subject[1:16,1]+coef(m1)$Subject[1:16,2]
girlint <- coef(m1)$Subject[17:27,1]
boyslope <- coef(m1)$Subject[1:16,3]+coef(m1)$Subject[1:16,4]
girlslope <- coef(m1)$Subject[17:27,3]
int <- c(boyint,girlint)
sl <- c(boyslope,girlslope)
est2 <- data.frame(sl,int, 
                 SEX = c(rep('Male',16),rep('Female',11)))
ggplot(Orthodont, aes(x=age,y=distance,color=Sex,group=Subject)) + 
  geom_abline(data=est2, aes(intercept=int, slope=sl, color=SEX),alpha=.2) + 
  geom.point(alpha=0)
  geom_abline(data=est, aes(intercept=int, slope=sl, color=SEX)) +
  xlab("Age (years)") + ylab("Distance (mm)") + 
  ggtitle("Trajectories by Gender")
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Model results
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What's next?
Move on to the readings for the next module!
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