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NELS DATA: TAKING A STEP BACK

Until now, we have used the NELS data to illustrate different aspects of
model fitting for the multilevel model.

Now let's step back and think about model selection for the data more
holistically, as if we're seeing them for the first time (for the most part).




NELS VARIABLES

Here are our variables of interest in the NELS:

Math score (individual-level outcome)
SES (individual-level socio-economic status)

FLP (school level % of kids eligible for free or reduced-price lunch -- think
of this as school-level SES)

= 1: 0-5% eligible
m 2: 5-30% eligible
= 3: >30% eligible

Enrollment (school level # of kids in 10th grade, rounded and measured in
hundreds, so 0=<100, 1=around 100, ..., 5=around 500)

Public (school level, takes value 1 if public school and 0 if private school)
Urbanicity (school level factor with levels rural, suburban, and urban )
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MODEL SELECTION

As we think about our model selection process, we'll keep in mind a couple of
methods for comparison.

» Likelihood ratio test for nested models

= For tests involving fixed effects only, we can use a Xfl for testing
whether d fixed effects all equal 0 (ML, not ok for REML)

= For tests involving random effects only, we can use a 50-50 mixture
of X?)_l and Xz%’ where p is the number of random effect variances in

the larger model

= Non-nested models or testing both fixed and random effects, not so
simple.
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MODEL SELECTION

One option is to rely on the metrics we already often use for model
comparison, like AIC, BIC, etc.

For BIC in particular, we have the following
= smaller is better
= it already adjusts for model complexity
= there is an approximation to posterior model probability
= model selection is consistent

= nesting between models is not required
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NELS paTaA

load('data/nels.Rdata')

avmscore.schools <- tapply(nels$Smscore,nels$school,mean,na.rm=TRUE)
id.schools <- names(avmscore.schools)

m <- length(id.schools)

nelss$sesstd <- nels$ses/sd(nelsSses)

nelsSenroll <- factor(nelsS$enroll)

nels$flp <- factor(nels$flp)

nels$public <- factor(nels$public)

nelsSurban <- factor(nelsSurban)
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WHAT'S WRONG WITH ANOVA?

Suppose | don't really care about school effects one way or the other. Why
not just use ANOVA (or other fixed effects model) here?

Under a fixed effects model,

e

Cov(y;) =




WHAT'S WRONG WITH ANOVA?

Under a random intercepts model,

(024—27'2 2:_2 2 Tz \
T o T T
COV(yj)I : : ’
\ T2 T2 02+7'2)

and

72

Corr(yij, Yir;) = 72102

We generally don't believe independence within the same school environment
holds.

This type of covariance structure is often called exchangeable or compound
symmetric.
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OTHER CONSIDERATIONS

Why not treat school as a fixed effect? That should handle the school
heterogeneity.

mlO <- Im(mscore~school+enroll+flp+public+
urbanicity, data=nels)

#summary (ml10)

coef(mlo) [ (length(coef(m10))-30):length(coef(mli0))]




OTHER CONSIDERATIONS

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

What happened to the estimates for enrollment, eligibility for free lunch,

school4513
1.771737
school14532
1.619069
school4552
2.027769
school4571
-3.348000
school4592
12.405182
school4612
-7.980692
enroll4

NA

publicl

NA

school4521
3.085000
school4541
1.912625
school4553
7.574857
school4572
4.,821000
school4601
-13.559667
enrolll

NA

enrolls

NA

urbanicitysuburban

NA

school4522
4.330590
school4542
4,158000
school4561
8.552385
schoo14582
9.443250
school4602
3.622333
enroll2

NA

flp2

NA

urbanicityurban

NA

public/private status, and urbanicity?

school4531
-5.556333
school4551
1.240200
school4562
1.357000
school4591
6.169727
school4611
5.820846
enroll3

NA

flp3

NA
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OTHER CONSIDERATIONS

The school-specific fixed effects explain approximately all heterogeneity in
means across schools, leaving basically no room for the other factors (which
we care more about in terms of learning about patterns in the data) to
explain any heterogeneity.

So this approach does not allow us to evaluate school-level predictors, and it
is also very expensive in terms of spending degrees of freedom (estimating a
lot of parameters).

This is a relatively common phenomenon when dealing with categorical
group-level predictors.
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HETEROGENEITY ACROSS SCHOOLS

Let's take a more detailed look at the heterogeneity across schools and how
much of that can be explained by measured school-level factors including
urbanicity, public/private status, free lunch percentage, and school size.

In a model with only a random intercept, let's calculate the intraclass
correlation -- the correlation between two kids in the same school.

iid iid
vij = Boj + €ij, Boj ~ N(Bo, %) L ;5 ~ N(0,057)

fit0® <- lmer(mscore~(1l|school),data=nels, REML=FALSE)

sigma2hat <- sigma(fit0)x*sigma(fito) #pick off estimate of sigmaZ2

tau2hat <- as.numeric(VarCorr (fit0)S$school) #pick off est of tau2
c(sigma2hat,tau2hat,tau2hat/(tau2hat+sigma2hat)) #show vars and correlation

## [1] 73.7084447 23.6341046 0.2427932
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HETEROGENEITY ACROSS SCHOOLS

How much of the heterogeneity across schools is explained by enrollment?

fitl <- lmer (mscore~enroll+(1l|school),data=nels, REML=FALSE)

sigma2hat <- sigma(fitl)*sigma(fitl) #pick off estimate of sigma2

tau2hat <- as.numeric(VarCorr(fitl)S$school) #pick off est of tau2
c(sigma2hat,tau2hat,tau2hat/(tau2hat+sigma2hat)) #show vars and correlation

## [1] 73.7202995 23.0948621 0.2385459

Not much!
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HETEROGENEITY ACROSS SCHOOLS

How much of the remaining heterogeneity across schools is explained by the
percentage of kids eligible for free or reduced price lunch?

fit2=Tmer (mscore~enroll+flp+(1|school),
data=nels, REML=FALSE)
sigma2hat <- sigma(fit2)*sigma(fit2) #pick off estimate of sigmaZ2
tau2hat <- as.numeric(VarCorr(fit2)S$school) #pick off est of tau2
c(sigma2hat,tau2hat,tau2hat/(tau2hat+sigma2hat)) #show vars and correlation

## [1] 73.7655328 13.5097521 0.1547947

Wow, “school-level SES" explained a lot of that heterogeneity.
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HETEROGENEITY ACROSS SCHOOLS

What if we add public/private status?

fit3=Tlmer (mscore~enroll+flp+public+

(1|school),data=nels, REML=FALSE)
sigma2hat=sigma(fit3)*xsigma(fit3) #pick off estimate of sigmaZ2
tau2hat=as.numeric(VarCorr (fit3)$school) #pick off est of tau2
c(sigma2hat,tau2hat,tau2hat/(tau2hat+sigma2hat)) #show vars and correlation

## [1] 73.7749179 13.2366759 0.1521254
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HETEROGENEITY ACROSS SCHOOLS

Now we add urbanicity.

fit4=Tmer (mscore~enroll+flp+public+

urbanicity+(1|school),data=nels, REML=FALSE)
sigma2hat=sigma(fit4)*xsigma(fitd) #pick off estimate of sigmaZ2
tau2hat=as.numeric(VarCorr (fit4)$school) #pick off est of tau2
c(sigma2hat,tau2hat,tau2hat/(tau2hat+sigma2hat)) #show vars and correlation

## [1] 73.779034 12.908770 0.148911
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SUMMARY

As we add more group-level predictors,
A2
= 7" decreases

= 57 stays about the same

= the within-group correlation is nonincreasing (and with the addition of
some variables decreases substantially)




NELS DaTta

Let's return to our data from a data analysis perspective (rather than just
illustrating aspects of the multi-level model), considering the hypotheses
regarding the role of school-specific and individual-specific factors in math
test scores.

We'll start with a simple model and build from there, using the BIC as our
primary selection criterion.

vij = Poj + Pijsesij + €ij, Boj = Po +boj Bij = B1 + by

~ N y Eiqg Y N O, o
(blj 0 Ti2 T2 ! ( )

This model allows random intercepts and slopes across schools.
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NELS DaTta

We saw previously that the random slope did explain additional heterogeneity
in a model without school-level predictors.

We'll come back to that question again once we add a few school level
predictors to the model.

Let's first compare our starting model to models that add enrollment to the
mix, so that

ng — /80 + aOkI(enrollj — k) + bOj
B1; = B1 + aaxl(enroll; = k) + by
k=1,....5

We'll use ML estimation because we may wish to consider likelihood ratio
tests of the mean parameters.

20 / 37



NELS DaTta

First, check out the base model.

modl=1lmer (mscore~sesstd+(sesstd|school),data=nels, REML=FALSE)
summary (mod1l)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Linear mixed model fit by maximum likelihood
Formula: mscore ~ sesstd + (sesstd | school)
Data: nels

AIC BIC logLik deviance df.resid
92553.1 92597.9 -46270.5 92541.1 12968

Scaled residuals:
Min 1Q Median 3Q Max
-3.8910 -0.6382 0.0179 0.6669 4.4613

Random effects:

Groups Name Variance Std.Dev. Corr
school (Intercept) 12.2231 3.4961
sesstd 0.8562 0.9253 0.11
Residual 67.3451 8.2064
Number of obs: 12974, groups: school, 684

Fixed effects:

Estimate Std. Error t value
(Intercept) 50.67670 0.15511 326.7
sesstd 3.27708 0.09256 35.4

Correlation of Fixed Effects:
(Intr)
sesstd 0.007

["lmerMod']
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NELS DaTta

mod2a=Tlmer (mscore~enroll+sesstd+(sesstd|school),
data=nels, REML=FALSE)
mod2b=Tmer (mscore~enroll+sesstd+enroll:sesstd+
(sesstd|school) ,data=nels, REML=FALSE)
anova(mod2b,mod2a)

## Data: nels

## Models:

## mod2a: mscore ~ enroll + sesstd + (sesstd | school)

## mod2b: mscore ~ enroll + sesstd + enroll:sesstd + (sesstd | school)

## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## mod2a 11 92557 92639 -46267 92535
## mod2b 16 92559 92678 -46263 92527 7.9798 5 0.1574

anova(mod2a,modl)

## Data: nels

## Models:

## modl: mscore ~ sesstd + (sesstd | school)

## mod2a: mscore ~ enroll + sesstd + (sesstd | school)

#it npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## modl 6 92553 92598 -46271 92541
## mod2a 11 92557 92639 -46267 92535 6.1315 5 0.2936

Here we don't see much evidence that enrollment is useful, so we don't need
to use it.
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NELS DaTta

Next we consider eligibility for free and reduced lunch.

Here we'll explore a variety of models, including the one above, a model
without the interaction with flp, a model that has the flp main effect but
drops the SES random effect, and a model that drops all the school random
effects given that flp is in the model (7 = 0).

mod3a=1mer (mscore~flp+sesstd+(sesstd|school),
data=nels, REML=FALSE)
mod3b=Tlmer (mscore~flp+sesstd+flprxsesstd+
(sesstd|school) ,data=nels, REML=FALSE)
mod3c=1lmer (mscore~flp+sesstd+(1l]|school),
data=nels, REML=FALSE)
mod3d=1m(mscore~flp+sesstd,data=nels)
anova(mod3b,mod3a)
anova(mod3a,modl)
anova(mod3c,mod3a) #just look at BIC here
BIC(mod3d) #check if random intercept needed by comparing to BIC from 3c
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MODEL SELECTION

mod3a=1mer (mscore~flpt+sesstd+(sesstd|school),

data=nels, REML=FALSE)

mod3b=1mer (mscore~flp+sesstd+flpxsesstd+(sesstd|school),

data=nels, REML=FALSE)

anova(mod3b,mod3a)

#4#
#4#
#4#
##
#4#
##
#

Data: nels

Models:

mod3a: mscore ~ flp + sesstd + (sesstd | school)

mod3b: mscore ~ flp + sesstd + flp * sesstd + (sesstd | school)
npar AIC BIC loglLik deviance Chisq Df Pr(>Chisq)

mod3a 8 92395 92454 -46189 92379

mod3b 10 92384 92459 -46182 92364 14.384 2 0.0007525
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MODEL SELECTION

anova(mod3a,modl)

#4#
#4#
#
##
#4#
#4#
#4#

Data: nels

Models:

modl: mscore ~ sesstd + (sesstd | school)

mod3a: mscore ~ flp + sesstd + (sesstd | school)

npar AIC BIC loglLik deviance Chisq Df Pr(>Chisq)

mod1 6 92553 92598 -46271 92541
mod3a 8 92395 92454 -46189 92379 162.51 2

< 2.2e-16



MODEL SELECTION

mod3c=1mer (mscore~flpt+sesstd+(1|school),
data=nels, REML=FALSE)
anova(mod3c,mod3a) #just look at BIC here

## Data: nels

## Models:

## mod3c: mscore ~ flp + sesstd + (1 | school)

## mod3a: mscore ~ flp + sesstd + (sesstd | school)

## npar AIC BIC loglLik deviance Chisq Df Pr(>Chisq)
## mod3c 6 92404 92449 -46196 92392

## mod3a 8 92395 92454 -46189 92379 13.371 2 0.001249

mod3d=1m(mscore~flp+sesstd,data=nels)
anova(mod3c,mod3d) #check if random intercept needed by comparing to BIC from 3c

## Data: nels

## Models:

## mod3d: mscore ~ flp + sesstd

## mod3c: mscore ~ flp + sesstd + (1 | school)

#it npar  AIC BIC loglLik deviance Chisq Df Pr(>Chisq)
## mod3d 5 93115 93152 -46552 93105

## mod3c 6 92404 92449 -46196 92392 712.63 1 < 2.2e-16

BIC(mod3d) #also use BIC

## [1] 93151.9
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MODEL SELECTION

Note that BIC now likes the model without a random slope -- we evaluated
that because we thought that after introducing a school-level SES variable to
the model, the importance of the individual-level SES variable may change.

It also prefers a model without an interaction between individual-level SES
and school-level SES (measured by flp).
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MODEL SELECTION

Now our model for the coefficients is

summary (mod3c)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: mscore ~ flp + sesstd + (1 | school)
#i#t Data: nels

##

#it AIC BIC logLik deviance df.resid
## 92403.9 92448.7 -46196.0 92391.9 12968
##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.9560 -0.6434 0.0178 0.6710 4.4906

##

## Random effects:

## Groups Name Variance Std.Dev.

## school (Intercept) 9.004 3.001

## Residual 67.959 8.244

## Number of obs: 12974, groups: school, 684
##

## Fixed effects:

#it Estimate Std. Error t value

## (Intercept) 52.84307 0.24462 216.020

## flp2 -1.87992 0.33042 -5.689

## flp3 -4.,79607 0.36150 -13.267

## sesstd 3.10819 0.08578 36.233

##

## Correlation of Fixed Effects:

## (Intr) flp2 flp3

## flp2  -0.739
## flp3 -0.697 0.514
#4 sesstd -0.202 0.143 0.237
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MODEL SELECTION

The more students we have eligible for the free and reduced price lunch
program, the lower the math scores.

In addition, the coefficient on individual-level SES did not change much in

magnitude -- so SES operates both on the school level and the individual
level.

Let's now add the public school indicator.

mod4a=Tlmer (mscore~flp+public+sesstd+
(1|school),data=nels, REML=FALSE)

mod4b=Tlmer (mscore~flp+public +
sesstd+public*sesstd+(1]|school),

data=nels, REML=FALSE)

anova(mod4b,mod4a)

anova(mod4b,mod3c)

#summary (mod4b)

29 / 37




MODEL SELECTION

mod4a=1mer (mscore~flp+publict+sesstd+(1|school),
data=nels, REML=FALSE)
mod4b=1lmer (mscore~flp+public + sesstd+
public*sesstd+(1|school),data=nels, REML=FALSE)
anova(mod4b,mod4a)

## Data: nels

## Models:

## mod4a: mscore ~ flp + public + sesstd + (1 | school)

## mod4b: mscore ~ flp + public + sesstd + public * sesstd + (1 | school)
#it npar  AIC BIC loglLik deviance Chisq Df Pr(>Chisq)

## mod4a 7 92406 92458 -46196 92392

## mod4b 8 92396 92456 -46190 92380 11.948 1 0.000547
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MODEL SELECTION

anova(mod4b,mod3c)

#4#
##
#
##
#4#
#4#
#4#

Data: nels

Models:

mod3c: mscore ~ flp + sesstd + (1 | school)

mod4b: mscore ~ flp + public + sesstd + public x sesstd + (1 | school)
npar AIC BIC loglLik deviance Chisq Df Pr(>Chisq)

mod3c 6 92404 92449 -46196 92392

mod4b 8 92396 92456 -46190 92380 12.081 2 0.002381

The BIC suggests leaving public/private out of the model.



MODEL SELECTION

Now let's consider urban/suburban/rural status.

mod5a=1lmer (mscore~flp+urbanicity+sesstd+(1|school),
data=nels, REML=FALSE)

mod5b=Tlmer (mscore~flp+urbanicity+sesstd+

urbanicity*sesstd+(1]|school),

data=nels, REML=FALSE)

anova(mod5b,mod5a)

anova(mod5a,mod3c)

summary (mod5b)



MODEL SELECTION

mod5a=1mer (mscore~flp+urbanicity+sesstd+(1|school),
data=nels, REML=FALSE)
mod5b=Tlmer (mscore~flp+urbanicity+sesstd+
urbanicity*sesstd+(1]|school),
data=nels, REML=FALSE)
anova(mod5b,mod5a)

## Data: nels

## Models:

## mod5a: mscore ~ flp + urbanicity + sesstd + (1 | school)

## mod5b: mscore ~ flp + urbanicity + sesstd + urbanicity * sesstd + (1 | school)
#i npar AIC BIC loglLik deviance Chisq Df Pr(>Chisq)

## mod5a 8 92400 92460 -46192 92384

## mod5b 10 92390 92465 -46185 92370 13.373 2 0.001248
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MODEL SELECTION

anova(mod5a,mod3c)

## Data: nels

## Models:

## mod3c: mscore ~ flp + sesstd + (1 | school)

## mod5a: mscore ~ flp + urbanicity + sesstd + (1 | school)

#H npar AIC BIC loglLik deviance Chisq Df Pr(>Chisq)
## mod3c 6 92404 92449 -46196 92392

## mod5a 8 92400 92460 -46192 92384 8.0578 2 0.01779

BIC suggests leaving urbanicity out of the model.




SUMMARY OF SELECTION USING BIC

= Enrollment, urbanicity, and public/private status did not add much to our
model using the BIC as our selection criterion

= The lower the SES status of the whole school (measured by percent
eligible for free and reduced-price lunch), the lower the math scores on
average

= Having higher individual-level SES was associated with higher math scores
regardless of the school environment

= A random intercept for school explained significant variability across
schools and controlled for lack of independence within schools

Yij = Boj + B1sesi;j + €j
Boj = Bo + Yol(flp; = 1) + by,

bojNN(O,T2) 6ijNN(0,O'2)
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FINAL MODEL AGAIN

summary (mod3c)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: mscore ~ flp + sesstd + (1 | school)
##t Data: nels

##

#i# AIC BIC loglLik deviance df.res1id
## 92403.9 92448.7 -46196.0 92391.9 12968
##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.9560 -0.6434 0.0178 0.6710 4.4906

##

## Random effects:

## Groups Name Variance Std.Dev.

## school (Intercept) 9.004 3.001

## Residual 67.959 8.244

## Number of obs: 12974, groups: school, 684
##

## Fixed effects:

#it Estimate Std. Error t value

## (Intercept) 52.84307 0.24462 216.020

## flp2 -1.87992 0.33042 -5.689

## flp3 -4.79607 0.36150 -13.267

## sesstd 3.10819 0.08578 36.233

##

## Correlation of Fixed Effects:

#it (Intr) flp2 flp3

## flp2  -0.739
## flp3 -0.697 0.514
## sesstd -0.202 0.143 0.237
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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