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NELS data recap

We fit a random intercepts ANCOVA to assess the association between math
score and SES.

That is, we allowed school-specific intercepts while including SES as a
covariate :

This model allows separate intercepts for each school but assumes a common
slope.

xij

yij = β0j + β1xij + εij;    i = 1, … ,nj

εij
iid
∼ N(0,σ2);     β0j ∼ N(β0, τ 2);    j = 1, … , J,
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Random intercepts model

Currently, we have the fitted lines:
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Extending the model

As an initial step towards extending our random intercepts model, we can
examine the variation in slopes across 685 separate regression models fit
separately in each school:

Here, we will fit an "unpooled" model with completely different regressions
for each school.

In each case, if we write , then the OLS estimaste of  is

where

 is a vector containing the math scores for all students in school ,

 contains a column of 1's for the intercept and a column containing the
SES of each student in school .

yij = β0j + β1jxij + εij,   εij ∼ N(0,σ2
j ).

βj = (β0j,β1j)′ βj

β̂ j = (X ′
jXj)

−1X ′
jyj,

yj j

Xj

j
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Different regressions for each school

xplot <- seq(-2.9,2.3,by=.1)
yplot <- rep(60,length(xplot))
plot(xplot,yplot,type="n",ylim=c(15,90),xlab="Standardized SES",ylab="Math Score")
for(school in 
    id.schools[order( avmscore.schools )[seq(1,length(avmscore.schools), by=1)]])
{
  y <- nels$mscore[nels$school==school]
  x <- nels$sesstd[nels$school==school]
  m <- lm(y~x)
  yplot <- coef(m)[1]+coef(m)[2]*xplot
  lines(xplot,yplot,lwd=length(y)/30)
}
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Different regressions for each school
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Different regressions for each school

The plot looks pretty different from what we had before!

By the way, line width is proportional to the number of students tested in
each school.

Among the schools, roughly 85% have positive slope estimates.

Also, the steepest slopes (positive and negative) tend to occur in the schools
with smaller sample sizes.

So, there may be "significant" differences in the slopes across schools.

How do we get good estimates of the school-specific slopes?
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Histograms of school-specific intercepts

and slopes
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School-specific slopes

As always, the goal is to slowly work our way up from pooled and unpooled
models.

Building on our knowledge of random intercept models (including ANOVA and
ANCOVA), our usual three approaches will lead to the following estimates in
this case.

, relying only on the data from school

, using all the data and pooling across
schools

, doing something in between

those two extremes. This is of course desirable here.

β̂ j = β̂
UNPOOL

j = (X ′
jXj)

−1X ′
jyj

j

β̂ j = β̂
POOL

= (X ′X)−1X ′y

β̂ j = wjβ̂
UNPOOL

j + (1 − wj)β̂
POOL
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School-specific slopes

Basically, we can play our usual game. We can fit a single model with school-
specific slopes and intercepts.

Now, these factors could be fixed or random effects.

Let's actually take a step back from the random effects model, and start with
a model with ONLY fixed effects.

If we wish to evaluate whether there is heterogeneity across schools, an easy
approach is to fit the model as a linear regression using indicator variables.

yij = β0j + β1jxij + εij,    εij ∼ N(0,σ2)
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Fixed effects model

That is,

where we assume  (reference cell coding).

In this case, an  test can be used to evaluate the hypothesis

which corresponds to a constant effect of SES, , across groups.

yij = β0 + αjI(school = j) + β1xij + γjxijI(school = j) + εij,

α1 = γ1 = 0

F

H0 : γj = 0,    j = 1, … , J − 1,

β1
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Fixed effects model

In R, we have

m6 <- lm(mscore~school+sesstd, data=nels) #pooled slope
m7 <- lm(mscore~school+sesstd+school:sesstd, data=nels) #school-specific slopes
anova(m6,m7)

## Analysis of Variance Table
## 
## Model 1: mscore ~ school + sesstd
## Model 2: mscore ~ school + sesstd + school:sesstd
##   Res.Df    RSS  Df Sum of Sq      F    Pr(>F)
## 1  12289 832772                               
## 2  11607 776507 682     56264 1.2332 4.865e-05

Here we have evidence in favor of school-specific slopes in the fixed effects
model.

However, our estimates of school-specific slopes in small schools may have
high standard errors.
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Estimated lines

Remember that unlike the previous plot of estimated lines, we have now
estimated a common variance.
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Hierarchical regression models

Our usual hierarchical normal model involves two levels:

within-group model  describing heterogeneity in
group ; and

among-groups model .

Specifically, we let

 (or  when desired)

.

p(y1j, … , ynjj ∣ θj)
j

p(θ1, … , θJ)

θj = (μj,σ
2) θj = (μj,σ

2
j )

y1j, … ynjj ∣ θj
iid
∼ N (μj,σ

2)

μ1, … ,μj
iid
∼ N (μ, τ 2)
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Hierarchical regression models

In the standard regression setting, we can then write

How should we model , the heterogeneity across groups in the vector
of regression coefficients?

θj = (βj,σ
2)

yij = β ′
jxij + εij,   εij

iid
∼ N (0,σ2)

β1, … ,βJ
iid
∼ p(βj|β)

p(βj|β)
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Hierarchical regression models

It is often the case that intercepts and slopes are correlated, so that we
should try to account for that when including varying intercepts and slopes.

In a study of income over time, people who start off making more money
may have larger raises over time.

In a study of exercise, people who exercise a lot at the start of the study
may have lower changes over time than those who exercise less

A natural choice for the  model is the multivariate normal distribution,
which allows for correlation among the group-specific regression coefficients.

βj

16 / 39



Hierarchical regression models

We can specify our model in the context of maximum likelihood estimation as

where

The parameters are

, an "overall" mean vector of regression coefficients,

's, the vectors of group specific coefficients, and

, a covariance matrix describing the variability of the 's around .

yj ∣ βj ∼ MVN(Xjβj,σ
2I)

βj ∼ MVN(β, Σβ)

βj ∼ MVN(β, Σβ) ⟺ βj = β + bj,   bj ∼ MVN(0, Σβ).

β

bj

Σβ βj β
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Hierarchical regression models

We can combine terms and write the model as

Here

 is usually called a fixed effect (fixed across all groups);

 is usually called a random effect (varies across groups and can be
considered random if groups were randomly sampled); and

a model with both fixed and random effects is often called a mixed-
effects model.

yj = Xjβj + εj = Xj(β + bj) + εj = Xjβ + Xjbj + εj

β

bj
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Ad hoc estimates

We can get a rough estimate of  by averaging the estimates from our 685
school-specific regression models.

BETA.OLS<-NULL
DF<-SSE<-0
y.nels=nels$mscore
ses.nels=nels$sesstd
for(j in sort(unique(nels$school)))
{
  yj<-y.nels[nels$school==j]
  xj<-ses.nels[nels$school==j]
  fitj<-lm(yj~xj)
  BETA.OLS<-rbind(BETA.OLS,fitj$coef) 
  if(length(yj)>=2)  {SSE<-SSE+sum(fitj$res^2) ; DF<-DF+length(yj)-2 }
}
s2.ols<-SSE/DF
apply(BETA.OLS,2,mean,na.rm=TRUE)

## (Intercept)          xj 
##   50.618228    2.760704

This estimator is not perfect -- it equally weights all the schools, regardless
of size. We would prefer to assign a lower weight to schools with less data.

β
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Ad hoc estimates

We can get a very rough estimate of :

cov(BETA.OLS,use="complete.obs") #dropped n=1 schools

##             (Intercept)        xj
## (Intercept)  26.7958507 0.7529181
## xj            0.7529181 8.9391754

This estimate not only ignores sample size differences, it also ignores the
variability of  around :

basically, the sample covariance of the 's is approximately

Σβ

β̂ j βj

Var[β̂ j's around β̂ ] ≈ Var[βj's around β] + Var[β̂ j's around βj's] :

β̂ j

Σβ + estimation error
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Covariance within Groups

In our model

and because we specify ,

Cov(yj) = E[(yj − E(yj))(yj − E(yj))′]

yj = Xjβj + εj = Xj(β + bj) + εj = Xjβ + Xjbj + εj,

yj − E[yj] = yj − Xjβ = Xjbj + εj,   bj ∼ N(0, Σβ),   εj ∼ N(0,σ2I)

bj ⊥ εj

Cov(yj) = E[(Xjbj + εj)(Xjbj + εj)
′]

= E[Xjbjb
′
jX

′
j] + E[εjε

′
j] = XjΣβX

′
j + σ2I.
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Marginal and conditional distributions of 

So conditional on ,

and unconditional on  we have

y

bj

yj ∼ MVN(Xjβ + Xjbj,σ
2I)

bj

p(yj ∣ β, Σβ,σ2) = MVN(Xjβ,XjΣβX
′
j + σ2I).
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Dependence and conditional independence

Marginal dependence: If we don't know  (or ), then knowing the response 
 gives me some information about , which gives us some information

about , so the observations within a group are dependent.

Conditional independence: If I do know , then knowing  does not give me
any extra information about , and they are independent. My information
about  if I know .

βj bj
yij βj

yi′j

βj yij
yi′j

yij ⊥ yi′j βj
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Fitting the model

m8 <- lmer(mscore~sesstd+(sesstd|school),data=nels,REML=FALSE)
summary(m8)

## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: mscore ~ sesstd + (sesstd | school)
##    Data: nels
## 
##      AIC      BIC   logLik deviance df.resid 
##  92553.1  92597.9 -46270.5  92541.1    12968 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8910 -0.6382  0.0179  0.6669  4.4613 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  school   (Intercept) 12.2231  3.4961       
##           sesstd       0.8562  0.9253   0.11
##  Residual             67.3451  8.2064       
## Number of obs: 12974, groups:  school, 684
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 50.67670    0.15511   326.7
## sesstd       3.27708    0.09256    35.4
## 
## Correlation of Fixed Effects:
##        (Intr)
## sesstd 0.007
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Do we need the random slope in addition

to the random intercept?
Let's test whether the slope should be random or fixed.

m9 <- lmer(mscore~sesstd+(1|school),data=nels,REML=FALSE)
anova(m9,m8)

## Data: nels
## Models:
## m9: mscore ~ sesstd + (1 | school)
## m8: mscore ~ sesstd + (sesstd | school)
##    npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)
## m9    4 92562 92592 -46277    92554                     
## m8    6 92553 92598 -46271    92541 12.582  2   0.001853

Yes, looks like the random slope explains additional variance.
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Group effects

dotplot(ranef(m8, condVar=TRUE))$school
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Comparing estimates

options(warn=-1)
B.LME<-as.matrix(ranef(m8)$school) 
BETA.LME<-sweep( B.LME , 2 , fixef(m8), "+" ) 

mpar() 
par(mfrow=c(1,2))

ssample<-sample(sort(unique(nels$school)),50) #less clutter take half schools
plot(range(nels$sesstd),range(nels$mscore),type="n",xlab="ses",ylab="math score") 
apply( BETA.OLS[ ssample,] ,1,abline) 
mtext("OLS regression lines",3) 

plot(range(nels$sesstd),range(nels$mscore),type="n",xlab="ses", ylab="math score") 
apply( BETA.LME[ ssample,] ,1,abline)  
mtext("HRM shrinkage estimates",3)
#options(warn=0)
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Comparing estimates
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Shrinkage Estimates

mpar()
par(mfrow=c(1,2))
plot(BETA.OLS[,1],BETA.LME[,1],xlab="OLS intercept",ylab="HRM intercept")
abline(0,1) 
plot(BETA.OLS[,2],BETA.LME[,2],xlab="OLS slope",ylab="HRM slope")
abline(0,1)
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Shrinkage Estimates
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What kind of schools have big intercepts

and big slopes?
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Free lunch variable

The US government has programs to provide free or reduced-price lunches to
students based on their family economic status.

The percentage of children in a school who are eligible to receive free or
reduced-price lunches is an indicator of the school-level socioeconomic
status.

In our data, the variable is defined as follows.

flp=1 if 0-5% of children are eligible to receive free or reduced-price
lunch

flp=2 if 5-30% of children are eligible for benefits

flp=3 if >30% of children are eligible for benefits

So higher levels of the flp variable are associated with lower school-level
socio-economic status

Let's examine whether as a school-level indicator, flp can explain additional
variability in school-level intercepts and slopes.
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Free lunch variable

flp.school<-tapply( nels$flp , nels$school, mean) 
table(flp.school) 

### RE and FLP association
mpar()
par(mfrow=c(1,2))
boxplot(BETA.LME[,1]~flp.school,col="lightblue", main="Intercepts by Lunch") 
boxplot(BETA.LME[,2]~flp.school,col="lightblue", main="Slopes by Lunch")
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Free lunch variable
## flp.school
##   1   2   3 
## 226 257 201
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Results

Based on the box plots, it seems that the  and maybe the  are
associated with school-level SES, measured by the percentage of kids eligible
for free and reduced-price lunch.

We may be interested in the following:

Testing: is there evidence of a relationship?

Estimation: what kind of relationship is there?

Let's expand our model so that we can investigate.

β0j β1j
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Model extension

Our current model can be written

where

To investigate whether the school-level SES variable explains additional
variance, we treat it as an discrete variable (the better way is probably to
treat as ordinal categorical) and expand the models for  so that

Putting things all together, we get

yij = β0j + β1jsesij + εij

β0j = β0 + b0j   and   β1j = β1 + b1j

βhj

β0j = β0 + ψ0flpj + b0j   and   β1j = β1 + ψ1flpj + b1j.

yij = β0 + ψ0flpj + β1sesij + ψ1flpjsesij + b0j + b1jsesij + εij
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Model extension

Note it does not matter if we use  or  notationally, so it may be simpler to
write

or more succinctly,

where  is a matrix containing a column of 1's, a column for flp, a column
for SES, and a column for the flp and SES interaction, and  contains colums
for the random intercept and random SES effect.

We'll return to this latter notation in the general context of the linear mixed
effects model.

ψ β

yij = β0 + β1flpj + β2sesij + β3flpjsesij + b0j + b1jsesij + εij

yj = Xjβ + Zjbj + εj,

Xj

Zj
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Fitting the model
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: mscore ~ sesstd + flp + sesstd:flp + (sesstd | school)
##    Data: nels
## 
##      AIC      BIC   logLik deviance df.resid 
##  92396.3  92456.0 -46190.1  92380.3    12966 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9773 -0.6417  0.0201  0.6659  4.5202 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  school   (Intercept)  9.0123  3.0020       
##           sesstd       0.8881  0.9424   0.06
##  Residual             67.2595  8.2012       
## Number of obs: 12974, groups:  school, 684
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  55.3975     0.3860 143.525
## sesstd        3.3759     0.2501  13.500
## flp          -2.4062     0.1819 -13.230
## sesstd:flp   -0.1451     0.1193  -1.216
## 
## Correlation of Fixed Effects:
##            (Intr) sesstd flp   
## sesstd     -0.158              
## flp        -0.930  0.088       
## sesstd:flp  0.086 -0.926 -0.007

Certainly flp is doing something, though maybe we don't need that interaction
term. We'll come back to this issue shortly.
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What's next?
Move on to the readings for the next module!
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