STA 610L: MODULE 2.7

RANDOM EFFECTS ANCOVA (INTRODUCTION)

DR. OLANREWAJU MICHAEL AKANDE

INTRODUCTION

- ANOVA, ANCOVA, MANOVA: what is the difference?
- ANOVA (Analysis of Variance): continuous outcome, categorical predictor(s)
 - one-way ANOVA: one categorical predictor
 - two-way ANOVA: two categorical predictors
 - two-way ANOVA with interaction: you get the picture!
- ANCOVA (Analysis of Covariance): continuous outcome, categorical predictor(s), at least one continuous predictor that is generally considered a "nuisance".
- MANOVA (Multivariate ANOVA): multiple continuous outcomes, categorical predictor(s).

Historically these names had implications regarding the estimation methods used, but that is no longer always the case.

MOTIVATING EXAMPLE: NELS

Hoff considers a subset of the National Educational Longitudinal Study of Education (NELS) data containing information on math scores for a random sample of 10th graders from a national sample of 685 large urban public schools.

```
load('data/nels.Rdata')
head(nels)
```

##		school	enroll	flp	public	urbanicity	hwh	ses	mscore
##	1	1011	5	3	1	urban	2	-0.23	52.11
##	2	1011	5	3	1	urban	0	0.69	57.65
##	3	1011	5	3	1	urban	4	-0.68	66.44
##	4	1011	5	3	1	urban	5	-0.89	44.68
##	5	1011	5	3	1	urban	3	-1.28	40.57
##	6	1011	5	3	1	urban	5	-0.93	35.04

MOTIVATING EXAMPLE: NELS

str(nels)

##	'data.frame':	12974 obs. of 8 variables:						
##	<pre>\$ school :</pre>	Factor w/ 684 levels "1011","1012",: 1 1 1 1 1 1 1 1 1						
##	<pre>\$ enroll :</pre>	num 555555555						
##	\$ flp :	num 333333333						
##	<pre>\$ public :</pre>	num 111111111						
##	<pre>\$ urbanicity:</pre>	Factor w/ 3 levels "rural","suburban",: 3 3 3 3 3 3 3 3 3						
##	\$ hwh :	num 2045351482						
##	\$ ses :	num -0.23 0.69 -0.68 -0.89 -1.28 -0.93 0.36 -0.24 -1.07 -0.1						
##	\$ mscore :	num 52.1 57.6 66.4 44.7 40.6						

summary(nels)

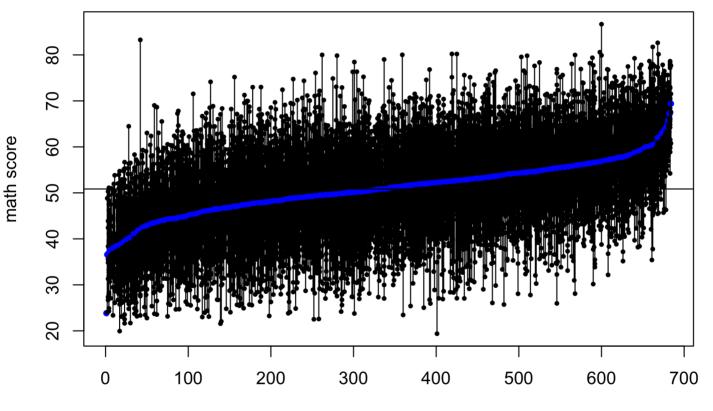
TA 610

##	school			enroll		flp		public			
##	4401	:	50	Min.	:0.000	Min.	:1.000	Min.	:0.0	0000	
##	4271	:	48	1st Qu	.:1.000	1st Qu	.:1.000	1st	Qu.:1.0	0000	
##	4341	:	46	Median	:2.000	Median	:2.000	Medi	an :1.0	0000	
##	4522	:	39	Mean	:2.314	Mean	:1.933	Mean	:0.7	7564	
##	1792	:	36	3rd Qu	.:4.000	3rd Qu	.:3.000	3rd	Qu.:1.0	0000	
##	4101	:	34	Max.	:5.000	Max.	:3.000	Max.	:1.0	0000	
##	(Other):12721										
##	urbanicity			hwh		ses			mscore		
##	rural	:2	349	Min.	: 0.000	Min.	:-2.110	000	Min.	:19.38	
##	suburba	an:6	5114	1st Qu.: 1.000		1st Qu.:-0.49000		000	1st Qu.:44.62		
##	urban	:4	511	Median	: 2.000	Media	n : 0.020	000	Median	:51.38	
##				Mean	: 2.755	Mean	: 0.067	'35	Mean	:51.17	
##				3rd Qu	.: 4.000	3rd Q	u.: 0.600	000	3rd Qu.	:58.21	
##				Max.	:21.000	Max.	: 1.980	000	Max.	:86.68	
##											

4 / 33

NELS EXAMPLE

NELS EXAMPLE

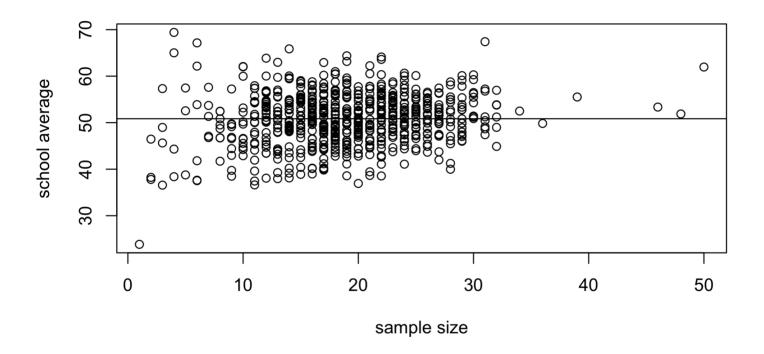


rank of school-specific math score average

NELS EXAMPLE

- The school-specific averages range from 24 to 69, with 51 the average of all 685 school averages (weighting each school equally).
- The school-specific variances range from 3 to 187 -- quite a wide range!
- The school with the highest average has a very small sample size $(n_j = 4)$.

WHICH SCHOOL IS BEST?



Do we really have strong evidence that the true mean in this school is substantially larger than that in other schools in the sample?

ANOVA

We could start by fitting a "standard" ANOVA model:

```
m1 <- lm(mscore~school,data=nels)
anova(m1)</pre>
```

Analysis of Variance Table
##
Response: mscore
Df Sum Sq Mean Sq F value Pr(>F)
school 683 342385 501.30 6.8118 < 2.2e-16
Residuals 12290 904450 73.59</pre>

summary(aov(mscore~school,data=nels))

Df Sum Sq Mean Sq F value Pr(>F)
school 683 342385 501.3 6.812 <2e-16
Residuals 12290 904450 73.6</pre>

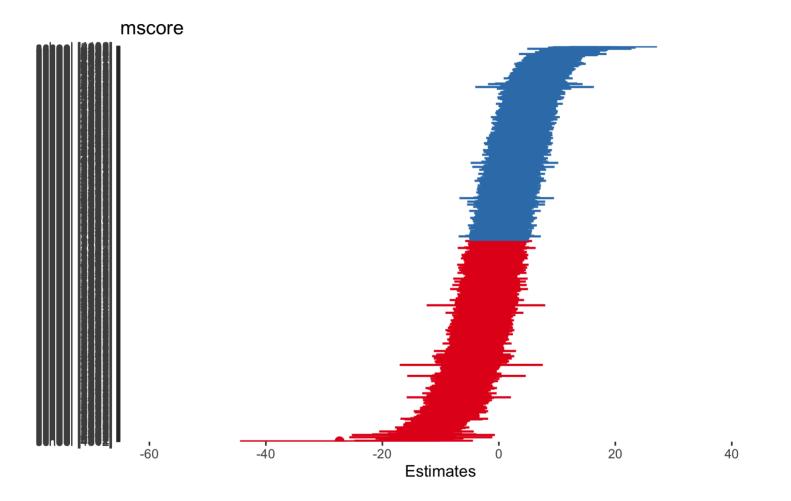
Here we see clear evidence of heterogeneity in math scores across schools.

ANOVA RESULTS

library(sjPlot)
plot_model(m1,sort.est=TRUE)

ANOVA RESULTS

STA 610



Messy plot but here we might even try to draw conclusions about the schools that are most different.

We may wish to use shrinkage estimation in order to stabilize the estimates, particularly for schools in which few students provide data, as we have done a few times already.

We can fit the usual random effects ANOVA model given by

$$y_{ij}=\mu+lpha_j+arepsilon_{ij},$$

where $arepsilon_{ij} \sim N(0,\sigma^2)$ and $lpha_j \sim N(0, au^2).$

```
library(lme4)
m2 <- lmer(mscore~(1|school),data=nels)
summary(m2)
#library(sjstats)</pre>
```

#icc(m2)

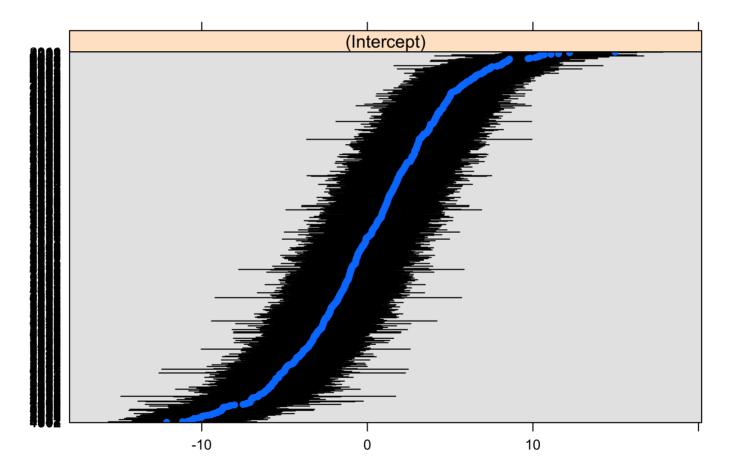

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: mscore ~ (1 | school)
##
     Data: nels
##
## REML criterion at convergence: 93914.6
##
## Scaled residuals:
##
      Min 10 Median
                               30
                                     Max
## -3.8113 -0.6534 0.0094 0.6732 4.7000
##
## Random effects:
                     Variance Std.Dev.
## Groups Name
## school (Intercept) 23.68
                                4.866
## Residual
                        73.71
                                8.585
## Number of obs: 12974, groups: school, 684
##
## Fixed effects:
              Estimate Std. Error t value
##
## (Intercept) 50.9390
                          0.2028
                                   251.2
```

The ICC is 0.243 so that we do have some correlation between students in the same school but not so strong. You should check this yourself.

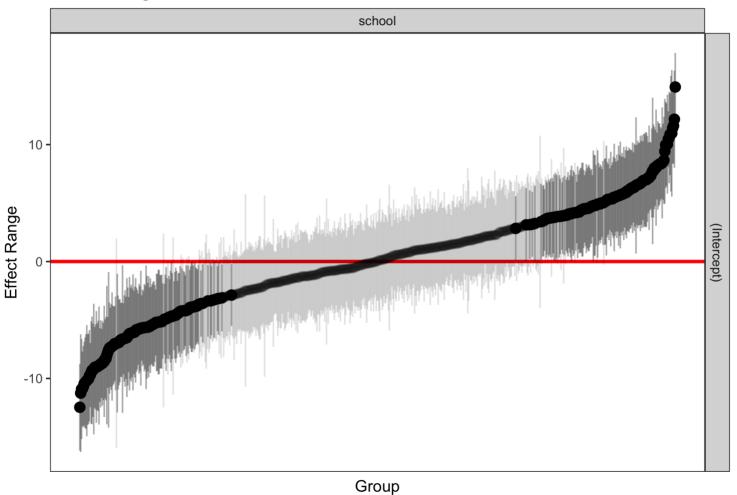
Next, we examine the distribution of random effects.

library(lattice)
dotplot(ranef(m2, condVar=TRUE))
#OR
library(merTools)
plotREsim(REsim(m2,n.sims=100),stat='median',sd=TRUE)

school



Effect Ranges



How do we conduct a formal test of heterogeneity in this random effects setting?

Well, this is a bit more complicated than in the fixed effects setting, where we had an F-test.

In particular, no heterogeneity corresponds to the case in which

$$au^2=0\iff lpha_1=\ldots=lpha_J=0,$$

so saying something about the single parameter au^2 has implications about the J parameters $lpha_j$.

A second problem is that τ^2 cannot be < 0, and we wish to test the null hypothesis $H_0: \tau^2 = 0$, so we are conducting a hypothesis test at the boundary of the parameter space.

As shown in Stram and Lee (1994), the approximate asymptotic null distribution for H_0 : $\tau^2 = 0$ using a likelihood ratio test comparing our model

$$y_{ij} = \mu + lpha_j + arepsilon_{ij}; \;\; lpha_j \sim N(0, au^2)$$

to a model without random effects

$$(y_{ij}=\mu+arepsilon_{ij})$$

in this case is a 50-50 mixture of a χ^2_0 (point mass on 0) and a χ^2_1 distribution.

In general, if we wish to compare a model with q + 1 random effects (calculated as terms that have a random effect, not the number of groups) to a nested model with q random effects, the asymptotic null distribution is a 50-50 mixture of χ^2_{q+1} and χ^2_q distributions.

Letting LR denote twice the difference in maximized log-likelihoods in the model with and without a single random effect, you can obtain the null density in R using

$$0.5 * (\operatorname{dchisq}(x, q+1) + \operatorname{dchisq}(x, q))$$

and the p-value via

```
0.5 * (1 - 	ext{pchisq}(LR, 	ext{q+1}) + 1 - 	ext{pchisq}(LR, q)).
```


For the NELS data fit using a frequentist random effects model, we would calculate this as follows.

```
m3 <- lmer(mscore~(1|school),data=nels,REML=FALSE) #ML estimation
m4 <- lm(mscore~1,data=nels)
LR <- 2*(logLik(m3)-logLik(m4))
LR</pre>
```

```
## 'log Lik.' 2137.067 (df=3)
```

```
0.5*(1-pchisq(LR[1],1)+1-pchisq(LR[1],0))
```

[1] O

anova(m3,m4)

```
## Data: nels
## Models:
## m4: mscore ~ 1
## m3: mscore ~ (1 | school)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m4 2 96054 96069 -48025 96050
## m3 3 93919 93942 -46957 93913 2137.1 1 < 2.2e-16</pre>
```

We conclude that there is significant heterogeneity across schools in the mean math scores.

BRINGING SES INTO THE MIX

NELS contains a measure of socioeconomic status (SES) for each student.

We generally expect some degree of correlation between SES and math score (people who are good at math often can get good jobs, and then have kids who may inherit math talents; rich parents may have more time and resources to devote to their kids).

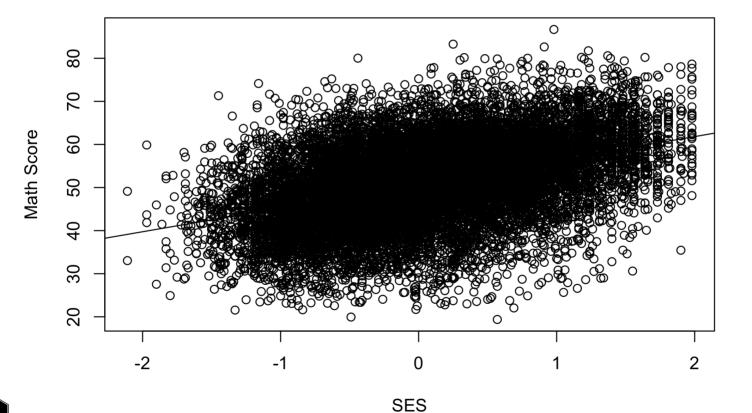
Of course the relationship is not deterministic (there are plenty of math whizzes who did not have rich parents -- Gauss!, and there are plenty of rich parents who have kids who do not make good math scores -- college admissions scandal!).

Also, the SES score itself is a summary score and not particularly interesting to interpret as is. We might want to standardize it to help with that.

BRINGING SES INTO THE MIX

TA 610

Let's look overall at the association between SES and math score in NELS.



22

33

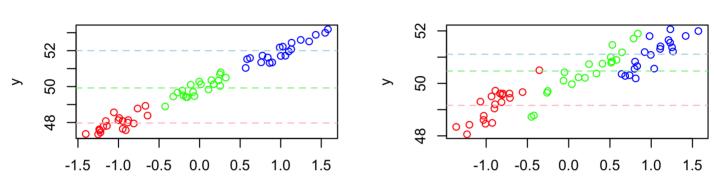
BIG PICTURE

Consider "simulated" data on schools, which we represent using red, green, and blue points on the plot on the next slide, respectively.

The schools we illustrate include one low SES school, one middle SES school, and one high SES school.

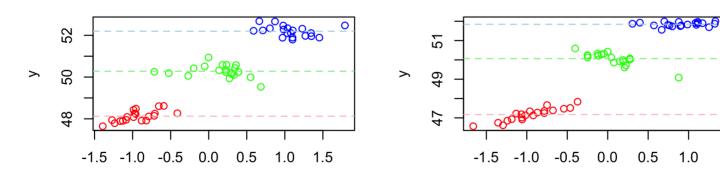
Let's consider multiple ways in which we could obtain the marginal association between SES and math score on the previous slide.

BIG PICTURE



ses

ses



ses

We want our model to be able to help us understand how SES (x_{ij}) and math scores are related in schools.

In the framework of the model, and switching notations a bit to linear regression notation,

$$y_{ij}=eta_{0j}+eta_{1j}x_{ij}+arepsilon_{ij},$$

what values of β_i are consistent with these figures?

One way to assess how SES is related to math score is to start with an ANCOVA model, allowing school-specific intercepts while including SES as a "fixed" covariate x_{ij} :

$$y_{ij}=eta_{0j}+eta_1 x_{ij}+arepsilon_{ij}.$$

In this model, we estimate the same effect of SES for each school.

We can then compare the two models.

First, the second model.

```
m5 <- lmer(mscore~ses+(1|school),data=nels)
summary(m5)</pre>
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: mscore ~ ses + (1 | school)
##
      Data: nels
##
## REML criterion at convergence: 92558.1
##
## Scaled residuals:
##
      Min
                10 Median
                                30
                                       Max
## -3.8753 -0.6428 0.0165 0.6693 4.4322
##
## Random effects:
                        Variance Std.Dev.
## Groups Name
## school (Intercept) 12.22
                                  3.495
## Residual
                         68.03
                                  8.248
## Number of obs: 12974, groups: school, 684
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept) 50.7175
                            0.1542 328.99
## ses
                4.3766
                            0.1123
                                   38.98
##
## Correlation of Fixed Effects:
##
       (Intr)
## ses -0.042
```

As mentioned earlier, SES is not particularly interesting to interpret as is.

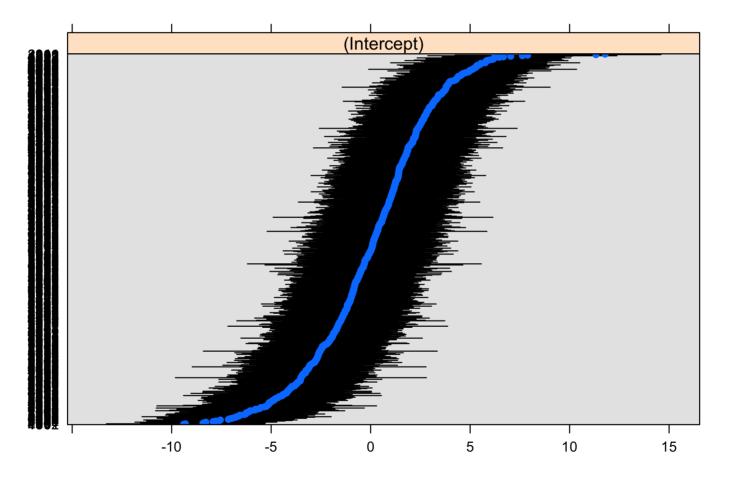
We can standardize the variable to get a different kind of interpretation.

```
nels$sesstd <- nels$ses/sd(nels$ses)</pre>
m5 <- lmer(mscore~sesstd+(1|school),data=nels)</pre>
summary(m5)
## Linear mixed model fit by REML ['lmerMod']
## Formula: mscore ~ sesstd + (1 | school)
     Data: nels
##
##
## REML criterion at convergence: 92558.7
##
## Scaled residuals:
##
      Min
                10 Median
                                30
                                        Max
## -3.8753 -0.6428 0.0165 0.6693 4.4322
##
## Random effects:
## Groups Name
                         Variance Std.Dev.
## school (Intercept) 12.22
                                  3.495
## Residual
                         68.03
                                  8.248
## Number of obs: 12974, groups: school, 684
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept) 50.7175
                            0.1542 328.99
## sesstd
                 3.2900
                            0.0844
                                   38.98
##
## Correlation of Fixed Effects:
##
          (Intr)
## sesstd -0.042
```

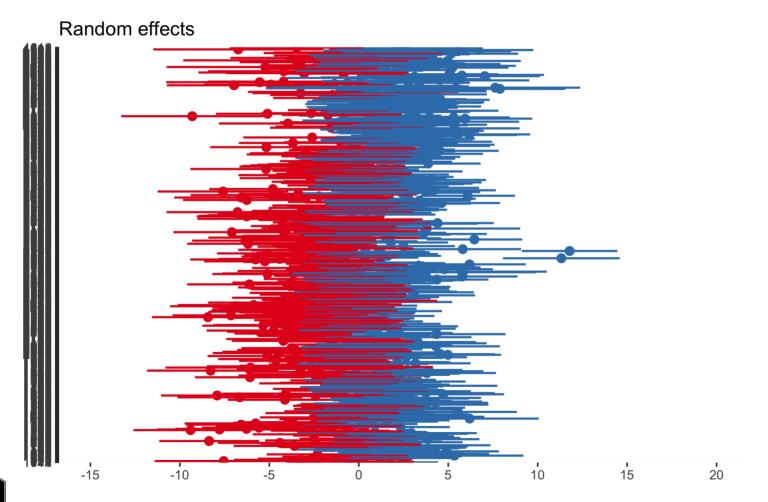
Pretty big effect of SES -- a 1 SD increase in SES is associated with a 3.3 point increase in math score on average.

STA 6101

school



plot_model(m5,type='re')



Let's plot the estimated school-specific lines from the random intercept model.

```
xplot=seq(-2.9,2.3,by=.1)
yplot=rep(60,length(xplot))
plot(xplot,yplot,type="n",ylim=c(30,70),xlab="Standardized SES",ylab="Math Score")
for(school in 1:length(id.schools))
{
    yplot=coef(m5)$school[school,1]+coef(m5)$school[school,2]*xplot
    lines(xplot,yplot)
}
```




31 / 33

This model allows separate intercepts for each school but assumes a common slope.

As we have already discussed, one concern is whether SES has the same relationship with math scores in all schools.

For example, some schools may have less of a disparity in scores across levels of SES than others.

So, next we would want to try random slopes of SES as discussed earlier and test the two nested models.

We'll do this in the next module.

WHAT'S NEXT?

Move on to the readings for the next module!

