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BAYESIAN RANDOM EFFECTS ANOVA MODEL

m Recall our hierarchical model can be written as

yij\uj,azw./\/(uj,a2); i=1,...,n;
le:u’77-2NN(lu'7T2); j:17"'7J,

with priors
(1) = N (10, 7%)
2
MNoT,
71_(7_2) — Ig (%, 020 )
14 0'2
n(0?) = 10 (7 2)

= We can write our own Gibbs sampler for this model (see end of this
module and also, next homework).

= However, since we will rely primarily on the brms package for fitting
many of our hierarchical models anyway, let’s see if we can fit a version
of this model to the radon data, using the brms package.




RADON STUDY AGAIN

#library(rstan)

#library(brms)

#library(tidybayes)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())

#note: there are many ways of specifying priors in brms

#we will touch on some other options soon

#see the help page for '"set_priors"”

#for now, vague priors under our model specification will do

prior <- c(set_prior("normal(0,5)", class = "Intercept"),
#set_prior("normal (0,10)", class = "b"),
set_prior("inv_gamma(0.5,5)", class = "sigma"),
set_prior("inv_gamma(0.5,5)", class = "sd"))

ml <- brm(log_radon ~ (1 | countyname),
data = Radon, family = gaussian(),
prior = prior,iter = 3000, warmup = 2000,seed = 13)

summary (ml)

3/ 30




RADON STUDY AGAIN

#4#
#4#
##
#4#
##
#
##
#4#
#4#
#4#
##
#4#
##
#
##
#4#
#4#
#4#
##
#4#
##
#
##

Family: gaussian
Links: mu = identity; sigma = identity
Formula: log_radon ~ (1 | countyname)
Data: Radon (Number of observations: 919)
Draws: 4 chains, each with diter = 5000; warmup = 2000; thin = 1;
total post-warmup draws = 12000

Group-Level Effects:

~countyname (Number of levels: 85)

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.40 0.05 0.31 0.51 1.00 5818 7459
Population-Level Effects:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 1.32 0.06 1.21 1.43 1.00 7103 8310
Family Specific Parameters:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma 0.80 0.02 0.76 0.84 1.00 22035 9252

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
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RADON STUDY AGAIN

We can compare the results to the frequentist estimates.

Modell <- lmer(log_radon ~ (1 | countyname), data = Radon)
summary (Modell)

## Linear mixed model fit by REML ['lmerMod']
## Formula: log_radon ~ (1 | countyname)
## Data: Radon

HH

## REML criterion at convergence: 2259.4

HH

## Scaled residuals:

#i# Min 1Q Median 3Q Max
## -4.4661 -0.5734 0.0441 0.6432 3.3516
H#

## Random effects:

## Groups Name Variance Std.Dev.
## countyname (Intercept) 0.09581 0.3095
## Residual 0.63662 0.7979
## Number of obs: 919, groups: countyname, 85
H#

## Fixed effects:

#i Estimate Std. Error t value

## (Intercept) 1.31258 0.04891 26.84
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RADON STUDY AGAIN

Quick diagnostics for the Bayesian model.

plot(ml)
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RADON STUDY AGAIN

We can plot the group means.

ml 9%>%
spread_draws (b_Intercept, r_countyname[countyname,]) %>%
median_qgi (" Group Means = b_Intercept + r_countyname) %>%
ggplot(aes(y = countyname, x = “Group Means', xmin = .lower, xmax = .upper)) +
geom_pointinterval(orientation = "horizontal")




RADON STUDY AGAIN
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RADON STUDY AGAIN

...or just the treatment effects.

ml 9%>%
spread_draws (r_countyname[countyname,]) %>%
median_qgi (" Group Effects’ = r_countyname) 9%>%
ggplot(aes(y = countyname, x = “Group Effects’, xmin = .lower, xmax = .upper)) +
geom_pointinterval(orientation = "horizontal")




RADON STUDY AGAIN
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CHALLENGE TO VALIDITY: HETEROGENEOUS
MEANS AND VARIANCES

Recall our model again:

yij|ﬂj70'2NN(Nj702); i=1,...,n
:U’j|:u’7T2NN(/J’7T2); J=10 000
:LLNN(:U’07’Y§)7

2

2 Mo Ty
T Ig( 2 Y 2 ) Y

2 g2 Y0,
g D) y ) °

While we are indeed sharing information across groups, we only do so via the
group-specific means.

While many people feel that shrinkage can "do no harm”, it can be quite
detrimental when the shrinkage target is not correctly specified.



MORTALITY BY VOLUME
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GROUP-SPECIFIC VARIANCES

How might we specify a model to avoid such problems? We could introduce
predictors to model group means and or group variances. For example,

aj ~ N(pj(2), 7} (2))

Another potential challenge is that the variance of the response may not be
the same for each group anyway. This could be due to a variety of factors.

One potential remedy for this issue is to allow the error variance to differ
across groups. A natural extension is

yij|ﬂj70'2NN<,U/j,0']2-); iz].,...,’n,j
il T2~ N ()5 G=1,..0,J,

2
2 2 2 vy N0,
015+ 051,05 ~ IG (7’ 2 |-




POSTERIOR INFERENCE

= The full posterior is now:

2 2 2 2 2 2 2 2
F(I“L].?"‘7/’1’J70-]_7"')0-J)/'L7T 7V0700|Y) Ocp(y|,u'1a'"7#’J70-17"'7O-Ja,u'77- 7V0a0-0)
2 2 2 2
Xp(:“’la“‘7NJ|01?"°70J7M777V0700)
2 2 2 2
X p(oyy.- 051, T, v, 07)

X Tr(lu’a T2a o, Ug)

=p(y|,u17'"7/1'J70-f,"'70-3)
Xp(,tl,l,...,,tLJ|,ll,,T2)

xp(af,...,a?,h/@,ag)

x () - w(7%) - w(vp) - ()

J
_ {fjpwﬁw,a;)}

j=1 i=1

J
X {“‘_P(Mj/iﬂj)}
Py

J
X {____P(U?Vmag)}
=1




FULL CONDITIONALS

= Notice that this new factorization won't affect the full conditionals for p
and 72 from before, since those have nothing to do with all the new a?'s.

= That is,

and




FULL CONDITIONALS

= The full conditional for each p;, we have
i o2 2 2 T (sl o2 b - pluslu, 72
W(M]l:“’-]a:u'a 01990, T ,Y) X {Hp(yU':U'],O-j)} p(,uj|,u,,7' )

1=1

with the only change from before being 0?.

= That is, those terms still include a normal density for p; multiplied by a

product of normals in which ; is the mean, again mirroring the previous
case, so you can show that

TF(/,LJ",U,*]', K, U%a oo 7037 7-27 Y) =N (,U/;, 7';) where

7'*——1 . *_7' —Q +_
i omy 1’ Hi = 7; azyj 7.2'u

2 2
. T
O'J



How ABOUT WITHIN-GROUP VARIANCES?

= Before we get to the choice of the priors for 1y and 03, we have enough
to derive the full conditional for each 032. This actually takes a similar
form to what we had before we indexed by 7, that is,

Ty
7T(‘712'|03j,ll1, DR 7,u'J,,u’,7'2,V0,O'g,Y) (0. ¢ {Hp(yljﬂ,],(ff)} © 7T(0'JZ|V0,O'§)
o=l

= This still looks like what we had before, that is, products of nhormals and
one inverse-gamma, so that

vr gl
J J J
W(U‘?|Uzj,/1/]_,...,/,LJ,/,L,TZ,U(),O'S,Y) :Ig —2 ,T Where

. _ : 200 _ 1
Vj—V0+nj, g; = —




REMAINING HYPER-PRIORS

= Now we can get back to priors for vy and 03. We know that a semi-

conjugate prior for 03 is a gamma distribution. That is, if we set

(o) = Ga (a,b),

then,

J=

J
7T(0'§,ul,...,,U,J,O'%,...,Ug,M,T2,V0,Y)OC{Hp 2|V0a } ( )
1
1411
g (02 & 0 0) . Qa(ag;a,b)

X

m Recall that

= Ga(y;a,b) = le=%, and

b
= ZG(y; a,b) = Ve Y




REMAINING HYPER-PRIORS
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REMAINING HYPER-PRIORS

= That is, the full conditional is

where




REMAINING HYPER-PRIORS

= OK that leaves us with one parameter to go, i.e., vg. Turns out there is
no simple conjugate/semi-conjugate prior for 1.

= Given that we know how to do Metropolis/Metropolis-Hastings, we
actually have many options here, but to keep this simple, let's follow the
same path as what you (hopefully) did for this model in STA 360/601/602.

= That is, restrict vy to be an integer (which makes sense when we think of
it as being degrees of freedom, which also means it cannot be zero). With
the restriction, we need a discrete distribution as the prior with support
onyy=1,2,3,....

= A popular choice is the geometric distribution with pmf
p(v) = (1 —p)"'p.

= However, we can rewrite the kernel as 7(1) o< e, How did we get
here from the geometric pmf and what is a?
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FINAL FULL CONDITIONAL

- N 2 2 2 2
= With this prior, m(vo|p1, ..., gy Oy 305, 1y T5,05,Y)




FINAL FULL CONDITIONAL

= That is, the full conditional is

(o] -+ ) : (f[ .
(oo _ / e
r(g) '

\ /

which is not a known kernel and is thus unnormalized (i.e., does not
integrate to 1 in its current form).

( Y09 %\J v o2 1_
( )() 0 42

= While this looks like a lot, it is relatively easy to compute in R, for a grid
of 19 values.

= Technically, the supportis vy = 1, 2, 3, .. .,but we can compute the
unnormalized distribution across say vy = 1,2, 3, ..., K for some large
K, re-normalize, and then sample.



FINAL FULL CONDITIONAL

= One more thing, computing these probabilities on the raw scale can be
problematic particularly because of the product inside. Good idea to
transform to the log scale instead.

= That is,
140 J 7]
/ vy <2>\ o gng
( | ) 2 ( J 1 ) (7—1) -1 CH-?FZI 0-—?
7‘(’ VO ------ K —_— . e
3 | e




FuLL MODEL

As a recap, the final model is:

yij|ﬂj,UJ2.NN(Mj,U?>; t=1,...,m5 j=1,...

:u’j|/1’77-2NN(/1’77-2); .72177']

2
1Y Vyo
2 2 2 0 0 1. ~_
0'1,...,0'JV0,0‘0NIQ<7, 5 ), 7= lhacand

p~ N (10,7])

2
2 Mo 7707-0
o Ig<2, 5 )

m(vy) ox e

o2 ~ Ga(a,b).




GIBBS SAMPLER

#Data summaries

J <- #number of groups

ybar <- #vector of the group sample means

s_j_sq <- #vector of the group sample variances

n <- #vector of the number of observations in each group

#Hyperparameters for the priors
mu_0 <- ...

gamma_0_sSq <- e

eta_0 <- ..o

tau_0_sq <- «ee

a-l.pha <= oo
A <= eee
b <= oo

#Grid values for sampling nu_0_grid
nu_0_grid <- 1:5000

#Initial values for Gibbs sampler

theta <- ybar #theta vector for all the mu_j's
sigma_sq <- s_j_sq

mu <- mean(theta)

tau_sq <- var(theta)

nu_0 <- 1

sigma_0_sq <- 100
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GIBBS SAMPLER

#first set number of iterations and burn-in, then set seed
n_iter <- 10000; burn_in <- 0.3*n_iter
set.seed(1234)

#Set null matrices to save samples
SIGMA_SQ <- THETA <- matrix(nrow=n_iter, ncol=3J)
OTHER_PAR <- matrix(nrow=n_iter, ncol=4)

#Now, to the Gibbs sampler
for(s in 1:(n_iter+burn_in)){

#update the theta vector (all the mu_j's)

tau_j_star <- 1/(n/sigma_sq + 1/tau_sq)

mu_j_star <- tau_j_starx(ybar*n/sigma_sq + mu/tau_sq)
theta <- rnorm(J,mu_j_star,sqrt(tau_j_star))

#update the sigma_sqg vector (all the sigma_sqg_j's)
nu_j_star <- nu_0 + n
theta_long <- rep(theta,n)
nu_j_star_sigma_j_sq_star <-
nu_0Ox*sigma_0_sq + c(by((Y[,"mathscore"] - theta_long)”2,Y[,"school"],sum))
sigma_sq <- 1/rgamma(J, (nu_j_star/2),(nu_j_star_sigma_j_sq_star/2))

#update mu

gamma_n_sq <- 1/(J/tau_sq + 1/gamma_0_sq)

mu_n <- gamma_n_sqx*(J*mean(theta)/tau_sq + mu_0/gamma_0_sq)
mu <- rnorm(l,mu_n,sqrt(gamma_n_sq))
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GIBBS SAMPLER

#update tau_sqg

eta_n <- eta_0 + J

eta_n_tau_n_sq <- eta_0*tau_0_sq + sum((theta-mu)”2)
tau_sq <- 1/rgamma(l,eta_n/2,eta_n_tau_n_sq/2)

#update sigma_0_sq
sigma_0_sq <- rgamma(l,(a + JI*xnu_0/2),(b + nu_Oxsum(1l/sigma_sq)/2))

#update nu_0
log_prob_nu_0 <- (J*nu_0_grid/2)*xlog(nu_0_grid*sigma_0_sq/2) -
J*1lgamma(nu_0_grid/2) +
(nu_0_grid/2+1)*sum(log(1l/sigma_sq)) -
nu_0_grid*(alpha + sigma_0_sqg*xsum(1l/sigma_sq)/2)
nu_0 <- sample(nu_0_grid,1l, prob = exp(log_prob_nu_0 - max(log_prob_nu_0)) )
#this last step substracts the maximum logarithm from all logs
#1t 1s a neat trick that throws away all results that are so negative
#they will screw up the exponential
#note that the sample function will renormalize the probabilities internally

#save results only past burn-in
if(s > burn_in){

THETA[ (s-burn_in),] <- theta

SIGMA_SQ[(s-burn_in),] <- sigma_sq

OTHER_PAR[ (s-burn_in),] <- c(mu,tau_sq,sigma_0_sq,nu_0O)
}

}
colnames (OTHER_PAR) <- c("mu","tau_sq","sigma_0_sq","nu_0")
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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