STA 610L: Module 2.5

RANDOM EFFECTS ANOVA (BAYESIAN ESTIMATION II)

DR. OLANREWAJU MICHAEL AKANDE

BAYESIAN RANDOM EFFECTS ANOVA MODEL

Recall our hierarchical model can be written as

$$egin{aligned} y_{ij} | \mu_j, \sigma^2 &\sim \mathcal{N}\left(\mu_j, \sigma^2
ight); & i = 1, \ldots, n_j \ \mu_j | \mu, au^2 &\sim \mathcal{N}\left(\mu, au^2
ight); & j = 1, \ldots, J, \end{aligned}$$

with priors

$$egin{align} \pi(\mu) &= \mathcal{N}\left(\mu_0, \gamma_0^2
ight) \ \pi(au^2) &= \mathcal{I}\mathcal{G}\left(rac{\eta_0}{2}, rac{\eta_0 au_0^2}{2}
ight) \ \pi(\sigma^2) &= \mathcal{I}\mathcal{G}\left(rac{
u_0}{2}, rac{
u_0\sigma_0^2}{2}
ight). \end{gathered}$$

- We can write our own Gibbs sampler for this model (see end of this module and also, next homework).
- However, since we will rely primarily on the brms package for fitting many of our hierarchical models anyway, let's see if we can fit a version of this model to the radon data, using the brms package.

```
#library(rstan)
#library(brms)
#library(tidybayes)
rstan options(auto write = TRUE)
options(mc.cores = parallel::detectCores())
#note: there are many ways of specifying priors in brms
#we will touch on some other options soon
#see the help page for "set priors"
#for now, vague priors under our model specification will do
prior <- c(set prior("normal(0,5)", class = "Intercept"),</pre>
           #set_prior("normal(0,10)", class = "b"),
           set_prior("inv_gamma(0.5,5)", class = "sigma"),
           set_prior("inv_gamma(0.5,5)", class = "sd"))
m1 <- brm(log_radon ~ (1 | countyname),</pre>
          data = Radon, family = gaussian(),
          prior = prior, iter = 3000, warmup = 2000, seed = 13)
summary(m1)
```

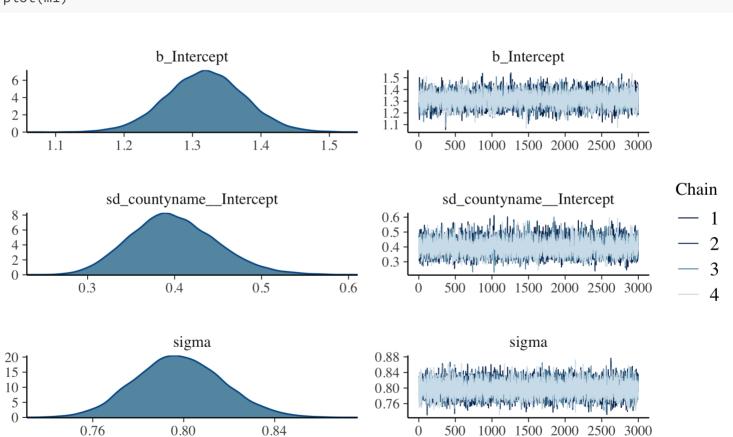
```
## Family: gaussian
     Links: mu = identity; sigma = identity
## Formula: log radon ~ (1 | countyname)
      Data: Radon (Number of observations: 919)
##
     Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
##
            total post-warmup draws = 12000
##
##
## Group-Level Effects:
## ~countyname (Number of levels: 85)
                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
##
## sd(Intercept)
                                         0.31
                                                  0.51 1.00
                                                                5818
                     0.40
                               0.05
                                                                         7459
##
## Population-Level Effects:
             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                                    1.21
## Intercept
                 1.32
                           0.06
                                              1.43 1.00
                                                            7103
                                                                     8310
##
## Family Specific Parameters:
         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
##
## sigma
             0.80
                       0.02
                                0.76
                                          0.84 1.00
                                                       22035
                                                                 9252
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
```


We can compare the results to the frequentist estimates.

```
Model1 <- lmer(log_radon ~ (1 | countyname), data = Radon)</pre>
summary(Model1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: log radon ~ (1 | countyname)
      Data: Radon
##
##
## REML criterion at convergence: 2259.4
##
## Scaled residuals:
##
      Min
               10 Median
                                30
                                       Max
## -4.4661 -0.5734 0.0441 0.6432 3.3516
##
## Random effects:
## Groups
              Name
                          Variance Std.Dev.
## countyname (Intercept) 0.09581 0.3095
## Residual
                           0.63662 0.7979
## Number of obs: 919, groups: countyname, 85
##
## Fixed effects:
              Estimate Std. Error t value
## (Intercept) 1.31258
                                     26.84
                        0.04891
```

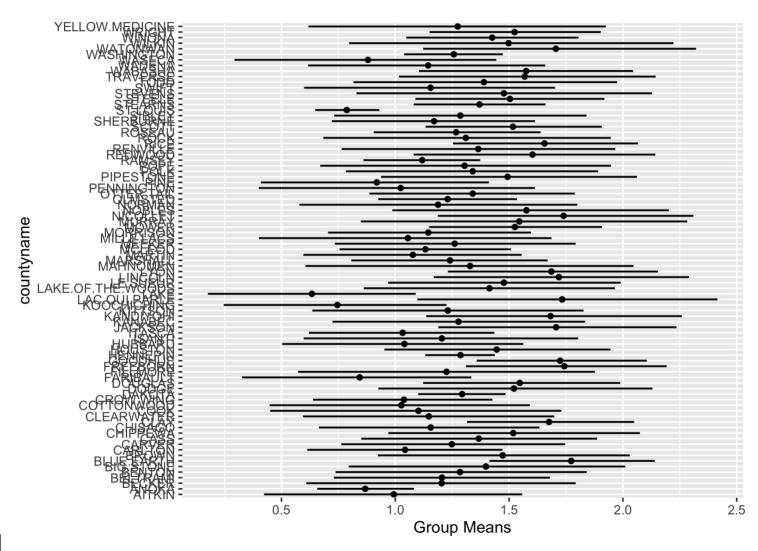

Quick diagnostics for the Bayesian model.

plot(m1)



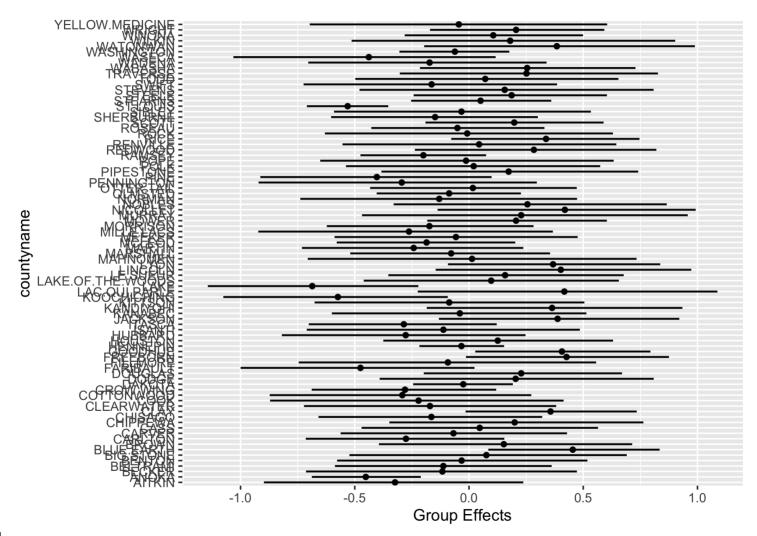
We can plot the group means.

```
m1 %>%
  spread_draws(b_Intercept, r_countyname[countyname,]) %>%
  median_qi(`Group Means` = b_Intercept + r_countyname) %>%
  ggplot(aes(y = countyname, x = `Group Means`, xmin = .lower, xmax = .upper)) +
  geom_pointinterval(orientation = "horizontal")
```

...or just the treatment effects.

```
m1 %>%
   spread_draws(r_countyname[countyname,]) %>%
   median_qi(`Group Effects` = r_countyname) %>%
   ggplot(aes(y = countyname, x = `Group Effects`, xmin = .lower, xmax = .upper)) +
   geom_pointinterval(orientation = "horizontal")
```

CHALLENGE TO VALIDITY: HETEROGENEOUS MEANS AND VARIANCES

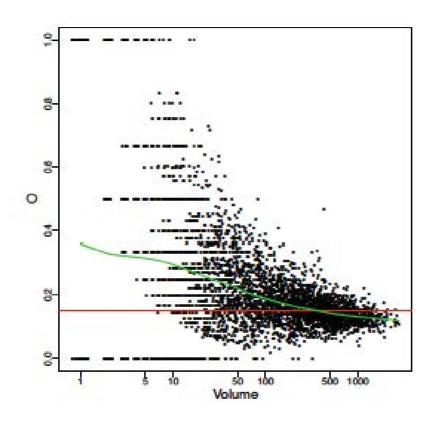
Recall our model again:

$$egin{aligned} y_{ij} | \mu_j, \sigma^2 &\sim \mathcal{N}\left(\mu_j, \sigma^2
ight); \quad i=1,\ldots,n_j \ \mu_j | \mu, au^2 &\sim \mathcal{N}\left(\mu, au^2
ight); \quad j=1,\ldots,J, \ \mu &\sim \mathcal{N}\left(\mu_0, \gamma_0^2
ight), \ & au^2 &\sim \mathcal{IG}\left(rac{\eta_0}{2}, rac{\eta_0 au_0^2}{2}
ight), \ &\sigma^2 &\sim \mathcal{IG}\left(rac{
u_0}{2}, rac{
u_0\sigma_0^2}{2}
ight). \end{aligned}$$

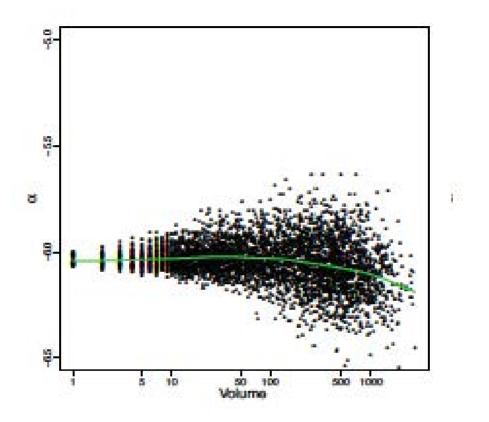
While we are indeed sharing information across groups, we only do so via the group-specific means.

While many people feel that shrinkage can "do no harm", it can be quite detrimental when the shrinkage target is not correctly specified.

MORTALITY BY VOLUME



ESTIMATED RANDOM INTERCEPTS BY VOLUME



GROUP-SPECIFIC VARIANCES

How might we specify a model to avoid such problems? We could introduce predictors to model group means and or group variances. For example,

$$lpha_j \sim N(\mu_j(z), au_j^2(z))$$

Another potential challenge is that the variance of the response may not be the same for each group anyway. This could be due to a variety of factors.

One potential remedy for this issue is to allow the error variance to differ across groups. A natural extension is

$$egin{aligned} y_{ij} | \mu_j, \sigma^2 &\sim \mathcal{N}\left(\mu_j, \sigma_j^2
ight); \quad i=1,\ldots,n_j \ \mu_j | \mu, au^2 &\sim \mathcal{N}\left(\mu, au^2
ight); \quad j=1,\ldots,J, \ \sigma_1^2, \ldots, \sigma_J^2 |
u_0, \sigma_0^2 &\sim \mathcal{IG}\left(rac{
u_0}{2}, rac{
u_0 \sigma_0^2}{2}
ight). \end{aligned}$$

Posterior inference

■ The full posterior is now:

$$\pi(\mu_{1}, \dots, \mu_{J}, \sigma_{1}^{2}, \dots, \sigma_{J}^{2}, \mu, \tau^{2}, \nu_{0}, \sigma_{0}^{2}|Y) \propto p(y|\mu_{1}, \dots, \mu_{J}, \sigma_{1}^{2}, \dots, \sigma_{J}^{2}, \mu, \tau^{2}, \nu_{0}, \sigma_{0}^{2}) \\ \times p(\mu_{1}, \dots, \mu_{J}|\sigma_{1}^{2}, \dots, \sigma_{J}^{2}, \mu, \tau^{2}, \nu_{0}, \sigma_{0}^{2}) \\ \times p(\sigma_{1}^{2}, \dots, \sigma_{J}^{2}|\mu, \tau^{2}, \nu_{0}, \sigma_{0}^{2}) \\ \times p(\sigma_{1}^{2}, \dots, \sigma_{J}^{2}|\mu, \tau^{2}, \nu_{0}, \sigma_{0}^{2}) \\ \times \pi(\mu, \tau^{2}, \nu_{0}, \sigma_{0}^{2}) \\ \times p(\mu_{1}, \dots, \mu_{J}|\mu, \tau^{2}) \\ \times p(\sigma_{1}^{2}, \dots, \sigma_{J}^{2}|\nu_{0}, \sigma_{0}^{2}) \\ \times \pi(\mu) \cdot \pi(\tau^{2}) \cdot \pi(\nu_{0}) \cdot \pi(\sigma_{0}^{2}) \\ = \begin{cases} \prod_{j=1}^{J} \prod_{i=1}^{n_{j}} p(y_{ij}|\mu_{j}, \sigma_{j}^{2}) \\ \sum \prod_{j=1}^{J} p(\mu_{j}|\mu, \tau^{2}) \\ \sum \prod_{j=1}^{J} p(\sigma_{j}^{2}|\nu_{0}, \sigma_{0}^{2}) \\ \times \pi(\mu) \cdot \pi(\tau^{2}) \cdot \pi(\nu_{0}) \cdot \pi(\sigma_{0}^{2}) \end{cases}$$

Full conditionals

- Notice that this new factorization won't affect the full conditionals for μ and τ^2 from before, since those have nothing to do with all the new σ_j^2 's.
- That is,

$$\pi(\mu|\cdots) = \mathcal{N}\left(\mu_n,\gamma_n^2
ight) \quad ext{where}$$
 $\gamma_n^2 = rac{1}{rac{J}{ au^2} + rac{1}{\gamma_0^2}}; \qquad \mu_n = \gamma_n^2 \left[rac{J}{ au^2}ar{ heta} + rac{1}{\gamma_0^2}\mu_0
ight],$

and

$$\pi(au^2|\cdots\cdots)=\mathcal{IG}\left(rac{\eta_n}{2},rac{\eta_n au_n^2}{2}
ight) \quad ext{where}
onumber \ \eta_n=\eta_0+J; \qquad au_n^2=rac{1}{\eta_n}\left[\eta_0 au_0^2+\sum_{j=1}^J(\mu_j-\mu)^2
ight].$$

Full conditionals

■ The full conditional for each μ_j , we have

$$\pi(\mu_j|\mu_{-j},\mu,\sigma_1^2,\ldots,\sigma_J^2, au^2,Y) \propto \left\{\prod_{i=1}^{n_j} p(y_{ij}|\mu_j,\sigma_j^2)
ight\} \cdot p(\mu_j|\mu, au^2)$$

with the only change from before being σ_i^2 .

■ That is, those terms still include a normal density for μ_j multiplied by a product of normals in which μ_j is the mean, again mirroring the previous case, so you can show that

$$\pi(\mu_j|\mu_{-j},\mu,\sigma_1^2,\ldots,\sigma_J^2, au^2,Y) = \mathcal{N}\left(\mu_j^\star, au_j^\star
ight) \quad ext{where}$$
 $au_j^\star = rac{1}{rac{n_j}{\sigma_j^2} + rac{1}{ au^2}}; \qquad \mu_j^\star = au_j^\star \left[rac{n_j}{\sigma_j^2}ar{y}_j + rac{1}{ au^2}\mu
ight]$

How about within-group variances?

■ Before we get to the choice of the priors for ν_0 and σ_0^2 , we have enough to derive the full conditional for each σ_j^2 . This actually takes a similar form to what we had before we indexed by j, that is,

$$\pi(\sigma_j^2|\sigma_{-j}^2,\mu_1,\ldots,\mu_J,\mu, au^2,
u_0,\sigma_0^2,Y) \propto \left\{\prod_{i=1}^{n_j} p(y_{ij}|\mu_j,\sigma_j^2)
ight\} \cdot \pi(\sigma_j^2|
u_0,\sigma_0^2)$$

 This still looks like what we had before, that is, products of normals and one inverse-gamma, so that

$$\pi(\sigma_j^2|\sigma_{-j}^2,\mu_1,\ldots,\mu_J,\mu, au^2,
u_0,\sigma_0^2,Y) = \mathcal{IG}\left(rac{
u_j^\star}{2},rac{
u_j^\star\sigma_j^{2(\star)}}{2}
ight) \quad ext{where}$$

$$u_j^\star =
u_0 + n_j; \qquad \sigma_j^{2(\star)} = rac{1}{
u_j^\star} \Bigg[
u_0 \sigma_0^2 + \sum_{i=1}^{n_j} (y_{ij} - \mu_j)^2 \Bigg] \, .$$

■ Now we can get back to priors for ν_0 and σ_0^2 . We know that a semiconjugate prior for σ_0^2 is a gamma distribution. That is, if we set

$$\pi(\sigma_0^2) = \mathcal{G}a\left(a,b
ight),$$

then,

$$\pi(\sigma_0^2|\mu_1, \dots, \mu_J, \sigma_1^2, \dots, \sigma_J^2, \mu, \tau^2, \nu_0, Y) \propto \left\{ \prod_{j=1}^J p(\sigma_j^2|\nu_0, \sigma_0^2) \right\} \cdot \pi(\sigma_0^2)$$

$$\propto \mathcal{IG}\left(\sigma_j^2; \frac{\nu_0}{2}, \frac{\nu_0 \sigma_0^2}{2}\right) \cdot \mathcal{G}a\left(\sigma_0^2; a, b\right)$$

Recall that

$$lacksquare \mathcal{G}a(y;a,b)\equiv rac{b^a}{\Gamma(a)}y^{a-1}e^{-by}$$
 , and

$$lacksquare \mathcal{IG}(y;a,b) \equiv rac{b^a}{\Gamma(a)} y^{-(a+1)} e^{-rac{b}{y}}.$$

lacksquare So $\pi(\sigma_0^2|\mu_1,\ldots,\mu_J,\sigma_1^2,\ldots,\sigma_J^2,\mu, au^2,
u_0,Y)$

$$\propto \left\{ \prod_{j=1}^{J} p(\sigma_{j}^{2} | \nu_{0}, \sigma_{0}^{2}) \right\} \cdot \pi(\sigma_{0}^{2})$$

$$\propto \prod_{j=1}^{J} \mathcal{IG}\left(\sigma_{j}^{2}; \frac{\nu_{0}}{2}, \frac{\nu_{0}\sigma_{0}^{2}}{2}\right) \cdot \mathcal{G}a\left(\sigma_{0}^{2}; a, b\right)$$

$$= \left[\prod_{j=1}^{J} \frac{\left(\frac{\nu_{0}\sigma_{0}^{2}}{2}\right)^{\left(\frac{\nu_{0}}{2}\right)}}{\Gamma\left(\frac{\nu_{0}}{2}\right)} (\sigma_{j}^{2})^{-\left(\frac{\nu_{0}}{2}+1\right)} e^{-\frac{\nu_{0}\sigma_{0}^{2}}{2(\sigma_{j}^{2})}} \right] \cdot \left[\frac{b^{a}}{\Gamma(a)} (\sigma_{0}^{2})^{a-1} e^{-b\sigma_{0}^{2}}\right]$$

$$\propto \left[\prod_{j=1}^{J} \left(\sigma_{0}^{2}\right)^{\left(\frac{\nu_{0}}{2}\right)} e^{-\frac{\nu_{0}\sigma_{0}^{2}}{2(\sigma_{j}^{2})}} \cdot \left[\left(\sigma_{0}^{2}\right)^{a-1} e^{-b\sigma_{0}^{2}}\right] \right]$$

$$\propto \left[\left(\sigma_{0}^{2}\right)^{\left(\frac{J\nu_{0}}{2}\right)} e^{-\sigma_{0}^{2}\left[\frac{\nu_{0}}{2}\sum_{j=1}^{J} \frac{1}{\sigma_{j}^{2}}\right]} \cdot \left[\left(\sigma_{0}^{2}\right)^{a-1} e^{-b\sigma_{0}^{2}}\right]$$

That is, the full conditional is

$$egin{aligned} \pi(\sigma_0^2|\cdots) & \propto \left[\left(\sigma_0^2
ight)^{\left(rac{J
u_0}{2}
ight)}_e^{-\sigma_0^2\left[rac{
u_0}{2}\int\limits_{j=1}^Jrac{1}{\sigma_j^2}
ight]}
ight] \cdot \left[\left(\sigma_0^2
ight)^{a-1}e^{-b\sigma_0^2}
ight] \ & \propto \left[\left(\sigma_0^2
ight)^{\left(a+rac{J
u_0}{2}-1
ight)}_e^{-\sigma_0^2\left[b+rac{
u_0}{2}\int\limits_{j=1}^Jrac{1}{\sigma_j^2}
ight]}
ight] \ & \equiv \mathcal{G}a\left(\sigma_0^2;a_n,b_n
ight), \end{aligned}$$

where

$$a_n = a + rac{J
u_0}{2}; \quad b_n = b + rac{
u_0}{2} \sum_{j=1}^J rac{1}{\sigma_j^2}.$$

- OK that leaves us with one parameter to go, i.e., ν_0 . Turns out there is no simple conjugate/semi-conjugate prior for ν_0 .
- Given that we know how to do Metropolis/Metropolis-Hastings, we actually have many options here, but to keep this simple, let's follow the same path as what you (hopefully) did for this model in STA 360/601/602.
- That is, restrict ν_0 to be an integer (which makes sense when we think of it as being degrees of freedom, which also means it cannot be zero). With the restriction, we need a discrete distribution as the prior with support on $\nu_0=1,2,3,\ldots$
- ullet A popular choice is the geometric distribution with pmf $p(
 u_0)=(1-p)^{
 u_0-1}p$.
- However, we can rewrite the kernel as $\pi(\nu_0) \propto e^{-\alpha\nu_0}$. How did we get here from the geometric pmf and what is α ?

FINAL FULL CONDITIONAL

• With this prior, $\pi(\nu_0|\mu_1,\ldots,\mu_J,\sigma_1^2,\ldots,\sigma_J^2,\mu,\tau^2,\sigma_0^2,Y)$

$$\propto \left\{ \prod_{j=1}^{J} p(\sigma_{j}^{2}|\nu_{0}, \sigma_{0}^{2}) \right\} \cdot \pi(\nu_{0})$$

$$\propto \prod_{j=1}^{J} \mathcal{IG}\left(\sigma_{j}^{2}; \frac{\nu_{0}}{2}, \frac{\nu_{0}\sigma_{0}^{2}}{2}\right) \cdot e^{-\alpha\nu_{0}}$$

$$= \left[\prod_{j=1}^{J} \frac{\left(\frac{\nu_{0}\sigma_{0}^{2}}{2}\right)^{\left(\frac{\nu_{0}}{2}\right)}}{\Gamma\left(\frac{\nu_{0}}{2}\right)} \left(\sigma_{j}^{2}\right)^{-\left(\frac{\nu_{0}}{2}+1\right)} e^{-\frac{\nu_{0}\sigma_{0}^{2}}{2(\sigma_{j}^{2})}} \right] \cdot e^{-\alpha\nu_{0}}$$

$$\propto \left[\left(\frac{\left(\frac{\nu_{0}\sigma_{0}^{2}}{2}\right)^{\left(\frac{\nu_{0}}{2}\right)}}{\Gamma\left(\frac{\nu_{0}}{2}\right)} \right)^{J} \cdot \left(\prod_{j=1}^{J} \frac{1}{\sigma_{j}^{2}}\right)^{\left(\frac{\nu_{0}}{2}+1\right)} \cdot e^{-\nu_{0}} \left[\frac{\sigma_{0}^{2}}{2} \sum_{j=1}^{J} \frac{1}{\sigma_{j}^{2}}\right] \right] \cdot e^{-\alpha\nu_{0}}$$

FINAL FULL CONDITIONAL

That is, the full conditional is

$$\pi(
u_0|\cdots) \propto \left[\left(rac{\left(rac{
u_0\sigma_0^2}{2}
ight)^{\left(rac{
u_0}{2}
ight)}}{\Gamma\left(rac{
u_0}{2}
ight)}
ight)^J \cdot \left(\prod_{j=1}^J rac{1}{\sigma_j^2}
ight)^{\left(rac{
u_0}{2}+1
ight)} \cdot e^{-
u_0\left[lpha + rac{\sigma_0^2}{2}\sum\limits_{j=1}^J rac{1}{\sigma_j^2}
ight]}
ight],$$

which is not a known kernel and is thus unnormalized (i.e., does not integrate to 1 in its current form).

- While this looks like a lot, it is relatively easy to compute in R, for a grid of ν_0 values.
- lacktriangledown Technically, the support is $u_0=1,2,3,\ldots$, but we can compute the unnormalized distribution across say $u_0=1,2,3,\ldots,K$ for some large K, re-normalize, and then sample.

FINAL FULL CONDITIONAL

- One more thing, computing these probabilities on the raw scale can be problematic particularly because of the product inside. Good idea to transform to the log scale instead.
- That is,

$$\pi(
u_0|\cdots) \propto \left[\left(rac{\left(rac{
u_0\sigma_0^2}{2}
ight)^{\left(rac{
u_0}{2}
ight)}}{\Gamma\left(rac{
u_0}{2}
ight)}
ight)^J \cdot \left(\prod_{j=1}^J rac{1}{\sigma_j^2}
ight)^{\left(rac{
u_0}{2}-1
ight)} \cdot e^{-
u_0\left[lpha + rac{\sigma_0^2}{2}\sum\limits_{j=1}^J rac{1}{\sigma_j^2}
ight]}
ight]$$

$$\Rightarrow \ln \pi(\nu_0|\cdots) \propto \left(\frac{J\nu_0}{2}\right) \ln \left(\frac{\nu_0\sigma_0^2}{2}\right) - J\ln \left[\Gamma\left(\frac{\nu_0}{2}\right)\right] \\ + \left(\frac{\nu_0}{2} + 1\right) \left(\sum_{j=1}^J \ln \left[\frac{1}{\sigma_j^2}\right]\right) \\ - \nu_0 \left[\alpha + \frac{\sigma_0^2}{2}\sum_{j=1}^J \frac{1}{\sigma_j^2}\right]$$

Full Model

As a recap, the final model is:

$$egin{align} y_{ij} | \mu_j, \sigma_j^2 &\sim \mathcal{N}\left(\mu_j, \sigma_j^2
ight); \quad i=1,\ldots,n_j; \quad j=1,\ldots,J \ & \mu_j | \mu, au^2 &\sim \mathcal{N}\left(\mu, au^2
ight); \quad j=1,\ldots,J \ & \sigma_1^2, \ldots, \sigma_J^2 |
u_0, \sigma_0^2 &\sim \mathcal{I}\mathcal{G}\left(rac{
u_0}{2}, rac{
u_0 \sigma_0^2}{2}
ight); \quad j=1,\ldots,J \ & \mu &\sim \mathcal{N}\left(\mu_0, \gamma_0^2
ight) \ & au^2 &\sim \mathcal{I}\mathcal{G}\left(rac{\eta_0}{2}, rac{\eta_0 au_0^2}{2}
ight). \ & \pi(
u_0) \propto e^{-lpha
u_0} \ & \sigma_0^2 &\sim \mathcal{G}a\left(a,b
ight). \ & \end{array}$$

GIBBS SAMPLER

```
#Data summaries
J <- #number of groups
ybar <- #vector of the group sample means
s_j_sq <- #vector of the group sample variances</pre>
n <- #vector of the number of observations in each group
#Hyperparameters for the priors
mu_0 <- ...
gamma_0_sq <- ...
eta_0 <- ...
tau_0_sq <- ...
alpha <- ...
a <- ...
b <- ...
#Grid values for sampling nu_0_grid
nu_0_grid <- 1:5000
#Initial values for Gibbs sampler
theta <- ybar #theta vector for all the mu_j's
sigma_sq <- s_j_sq
mu <- mean(theta)</pre>
tau_sq <- var(theta)</pre>
nu_0 <- 1
sigma_0_sq <- 100
```

GIBBS SAMPLER

```
#first set number of iterations and burn-in, then set seed
n iter <- 10000; burn in <- 0.3*n iter
set.seed(1234)
#Set null matrices to save samples
SIGMA SO <- THETA <- matrix(nrow=n iter, ncol=J)
OTHER PAR <- matrix(nrow=n iter, ncol=4)
#Now, to the Gibbs sampler
for(s in 1:(n iter+burn in)){
  #update the theta vector (all the mu_j's)
 tau_j_star <- 1/(n/sigma_sq + 1/tau_sq)
 mu_j_star <- tau_j_star*(ybar*n/sigma_sq + mu/tau_sq)</pre>
 theta <- rnorm(J,mu_j_star,sqrt(tau_j_star))</pre>
  #update the sigma_sq vector (all the sigma_sq_j's)
 nu i star <- nu 0 + n
 theta long <- rep(theta,n)
 nu i star sigma i sq star <-
    nu_0*sigma_0_sq + c(by((Y[,"mathscore"] - theta_long)^2,Y[,"school"],sum))
 sigma_sq <- 1/rgamma(J,(nu_j_star/2),(nu_j_star_sigma_j_sq_star/2))</pre>
  #update mu
 gamma_n_sq \leftarrow 1/(J/tau_sq + 1/gamma_0_sq)
 mu_n <- gamma_n_sq*(J*mean(theta)/tau_sq + mu_0/gamma_0_sq)</pre>
 mu <- rnorm(1,mu_n,sqrt(gamma_n_sq))</pre>
```

GIBBS SAMPLER

```
#update tau sq
 eta n <- eta 0 + J
 eta_n_tau_n_sq <- eta_0*tau_0_sq + sum((theta-mu)^2)
 tau_sq <- 1/rgamma(1,eta_n/2,eta_n_tau_n_sq/2)</pre>
 #update sigma 0 sq
 sigma \ 0 \ sq \ - \ rgamma(1,(a + J*nu \ 0/2),(b + nu \ 0*sum(1/sigma \ sq)/2))
  #update nu 0
 \log_p rob_n u_0 < (J*nu_0_g rid/2)*log(nu_0_g rid*sigma_0_s q/2) -
    J*lgamma(nu_0_grid/2) +
    (nu_0_grid/2+1)*sum(log(1/sigma_sq)) -
    nu_0_grid*(alpha + sigma_0_sq*sum(1/sigma_sq)/2)
 nu_0 <- sample(nu_0_grid,1, prob = exp(log_prob_nu_0 - max(log_prob_nu_0)) )</pre>
  #this last step substracts the maximum logarithm from all logs
  #it is a neat trick that throws away all results that are so negative
  #they will screw up the exponential
  #note that the sample function will renormalize the probabilities internally
  #save results only past burn-in
 if(s > burn_in){
    THETA[(s-burn_in),] <- theta</pre>
    SIGMA_SQ[(s-burn_in),] <- sigma_sq</pre>
    OTHER_PAR[(s-burn_in),] <- c(mu,tau_sq,sigma_0_sq,nu_0)
 }
colnames(OTHER_PAR) <- c("mu","tau_sq","sigma_0_sq","nu_0")</pre>
```

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

