STA 610L: MODULE 2.2

RANDOM EFFECTS ANOVA (ESTIMATION)

DR. OLANREWAJU MICHAEL AKANDE

MAXIMUM LIKELIHOOD ESTIMATION

Recall our random effects ANOVA model for the bike data.

That is,

$$y_{ij} = \mu + lpha_j + arepsilon_{ij},$$

where $arepsilon_{ij} \stackrel{iid}{\sim} N(0,\sigma^2) \perp lpha_j \stackrel{iid}{\sim} N(0, au^2).$

 y_{ij} indicates the passing distance between the car and the bike, and α_j represent effects of different distances between the bike and the curb.

Also, recall the general linear mixed effects models representation

$$Y = X\beta + Zb + \varepsilon,$$

with $\Sigma = \operatorname{Var}(Y) = au^2 Z Z' + \sigma^2 I.$

MAXIMUM LIKELIHOOD ESTIMATION

Our ${\cal N}=nJ$ outcomes follow the multivariate Gaussian distribution, our likelihood is given by

$$(2\pi)^{-rac{N}{2}}|\Sigma|^{-rac{1}{2}}\expigg[-rac{1}{2}(y-Xeta)'\Sigma^{-1}(y-Xeta)igg],$$

which we then need to maximize.

Since we often work with log-likelihoods, write

$$\ell(y,eta,\Sigma) = -rac{1}{2}ig[N\log(2\pi) + \log|\Sigma| + (y-Xeta)'\Sigma^{-1}(y-Xeta)ig] \ \propto \log|\Sigma| + (y-Xeta)'\Sigma^{-1}(y-Xeta),$$

which we then minimize (as I took the negative) in order to find the MLE.

Peter Hoff's notes covers this is a bit more detail but we can just do it directly in R, so let's do that.

MLE FOR BIKE DATA

Actually we can let the lmer function do the work for us.

```
load("data/PsychBikeData.RData")
library(lme4)
fit.ml=lmer(`passing distance` ~ (1 | kerb), REML=FALSE, data = PsychBikeData)
summary(fit.ml)
```


MLE FOR BIKE DATA

```
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: `passing distance` ~ (1 | kerb)
##
      Data: PsychBikeData
##
##
        AIC
                 BIC
                     logLik deviance df.resid
##
     2028.7
              2046.0 -1011.4 2022.7
                                           2352
##
## Scaled residuals:
##
      Min
                1Q Median
                                30
                                       Max
  -3.5113 -0.6674 -0.0948 0.5511 6.3949
##
##
## Random effects:
## Groups
            Name
                         Variance Std.Dev.
## kerb
             (Intercept) 0.009206 0.09595
## Residual
                         0.137203 0.37041
## Number of obs: 2355, groups: kerb, 5
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept) 1.54023
                           0.04363
                                      35.3
```

Our ML estimates of (μ, τ^2, σ^2) for the bike data are $(\widehat{\mu}, \widehat{\tau}^2, \widehat{\sigma}^2) = (1.540, 0.009, 0.137).$

RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION

REML (restricted or residual maximum likelihood) estimation is quite popular for variance component estimation.

Features of REML estimation include the following

- it is based on a likelihood function that only uses information that does not depend on fixed effects (we define new outcomes orthogonal to the mean)
- it is generally less biased than ML estimates (and unbiased in certain special cases)

MLE FOR ONE-SAMPLE SETTING

First, recall a one-sample setting in which we wish to estimate the sample mean μ and variance σ^2 using the model

$$y_i=\mu+arepsilon_i, \;\; i=1,\ldots,n$$

with $arepsilon_{i} \sim N\left(0,\sigma^{2}
ight).$

Then our log-likelihood is proportional to $n\log\sigma^2 + rac{\sum(y_i-\mu)^2}{\sigma^2}$.

To find the MLE's of μ and σ^2 , take derivatives and solve for zero to obtain $\widehat{\mu} = \overline{y}$ and $\widehat{\sigma}^2 = \frac{\sum (y_i - \overline{y})^2}{n}$.

Of course typically we don't use the MLE to estimate σ^2 because of its wellknown small-sample bias, instead using the unbiased estimate $s^2 = \frac{\sum (y_i - \bar{y})^2}{n-1} = \frac{n}{n-1} \hat{\sigma}^2$.

REML FOR SIMPLEST CASE

REML estimates are often based on a full-rank set of error contrasts -- the basic idea is to retain the information in the data about the variance while eliminating the fixed effects.

The full residuals $\varepsilon_i = y_i - \mu$ contain all the information in the likelihood about the variance parameter σ^2 . Because the residuals are independent of the fixed effect μ , we can re-express our log likelihood to isolate the residual likelihood:

$$\ell(y,\mu,\sigma^2) = \ell(arepsilon,\mu,\sigma^2) + \ell(\overline{y},\mu,\sigma^2)$$
 .

We know $\widehat{\mu} = \overline{y} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ and so $\ell(\overline{y}, \mu, \sigma^2) \propto \log \frac{\sigma^2}{n} + \frac{(\overline{y} - \mu)^2}{\frac{\sigma^2}{n}}$ which reduces to $\log \sigma^2 - \log n$ once we plug in the MLE \overline{y} for μ .

A slightly different approach to this actually attempts to integrate out μ from the original likelihood.

REML FOR SIMPLEST CASE

Then

$$\ell(arepsilon,\mu,\sigma^2) \propto n\log\sigma^2 + rac{\sum(y_i-\mu)^2}{\sigma^2} - \log\sigma^2 + \log n$$

which is proportional to

$$(n-1)\log\sigma^2+rac{\sum(y_i-\mu)^2}{\sigma^2},$$

which looks just like our ML likelihood with the exception of the multiplier n-1 instead of n, and it's straightforward to show the maximum is $\widehat{\sigma}_{REML}^2 = \frac{\sum (y_i - \mu)^2}{n-1}$, where μ is replaced with its estimate.

We can follow a similar approach for the random effects ANOVA model.

Because they are generally less biased than ML estimates, REML estimates are typically the default frequentist estimates provided by many software packages.

REML ESTIMATES FOR THE BIKE DATA

```
fit.reml=lmer(`passing distance` ~ (1 | kerb), REML=TRUE, data = PsychBikeData)
summary(fit.reml)
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: `passing distance` ~ (1 | kerb)
     Data: PsychBikeData
##
##
## REML criterion at convergence: 2027
##
## Scaled residuals:
            10 Median 30
      Min
##
                                     Max
## -3.5132 -0.6647 -0.0940 0.5498 6.3978
##
## Random effects:
## Groups Name
                    Variance Std.Dev.
## kerb (Intercept) 0.01157 0.1076
## Residual
                        0.13720 0.3704
## Number of obs: 2355, groups: kerb, 5
##
## Fixed effects:
              Estimate Std. Error t value
##
## (Intercept) 1.54008 0.04876 31.59
```

Our REML estimates for the bike data are $(\widehat{\mu}, \hat{\tau}^2, \widehat{\sigma}^2) = (1.540, 0.012, 0.137).$

Empirical Bayes

When we have random effects in a model, the standard frequentist effects of these random quantities are called *empirical Bayes* estimates, regardless of whether we obtain other estimates using ML or REML.

Empirical Bayes

Recall our group means formulation:

$$y_{ij} = \mu_j + arepsilon_{ij} \ u_1, \cdots, \mu_J \stackrel{iid}{\sim} N(\mu, au^2) \ arepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2).$$

Suppose (μ, τ^2, σ^2) are known exactly and consider estimating μ_j with an estimator that is a linear function of the group sample mean $\hat{\mu}_j = a\overline{y}_j + b$. Then one can show that the MSE $E[(\mu_j - \hat{\mu}_j)^2]$ is minimized if $a = \frac{\frac{n_j}{\sigma^2}}{\frac{n_j}{\sigma^2} + \frac{1}{\tau^2}}$ and $b = (1 - a)\mu$, so that $\hat{\mu}_j = w_j\overline{y}_j + (1 - w_j)\mu$, where $w_j = \frac{\frac{n_j}{\sigma^2}}{\frac{n_j}{\sigma^2} + \frac{1}{\tau^2}}$

Empirical Bayes

If we knew (μ, τ^2, σ^2) this estimate would be the *Bayes estimate*; however, we do not know these parameters and are instead estimating them from the data, so that

$$\widehat{\mu}_j = \widehat{w}_j \overline{y}_j + (1 - \widehat{w}_j) \widehat{\mu}$$
, where $\widehat{w}_j = rac{rac{n_j}{\widehat{\sigma}^2}}{rac{n_j}{\widehat{\sigma}^2} + rac{1}{\widehat{\tau}^2}}$

is called an *empirical Bayes estimate* because our unknown parameters have been replaced by "empirical" estimates from the data.

While this estimate is widely-used, it has several unsatisfactory qualities, including a standard variance estimate known to be an underestimate.

This is great motivation for consideration of Bayesian approaches when formal comparisons among groups modeled with random effects are desired.

EB ESTIMATES OF GROUP MEANS FOR BIKE DATA

table(PsychBikeData\$kerb); mean(PsychBikeData\$`passing distance`)

0.25 0.5 0.75 1 1.25 ## 670 545 339 469 332

[1] 1.563912

tapply(PsychBikeData\$`passing distance`,PsychBikeData\$kerb,mean)

0.25 0.5 0.75 1 1.25 ## 1.698054 1.590473 1.505519 1.490584 1.412813

coef(fit.ml)

```
## $kerb
## (Intercept)
## 0.25 1.694619
## 0.5 1.589136
## 0.75 1.506981
## 1 1.492113
## 1.25 1.418287
##
## attr(,"class")
## [1] "coef.mer"
```


EB ESTIMATES OF GROUP MEANS FOR BIKE DATA

tapply(PsychBikeData\$`passing distance`,PsychBikeData\$kerb,mean)

0.25 0.5 0.75 1 1.25 ## 1.698054 1.590473 1.505519 1.490584 1.412813

coef(fit.reml)

\$kerb
(Intercept)
0.25 1.695307
0.5 1.589401
0.75 1.506687
1 1.491805
1.25 1.417201
##
attr(,"class")
[1] "coef.mer"

Here we see only a slight shrinkage back towards the overall mean, due in large part to the large sample sizes within curb distances.

WHAT'S NEXT?

Move on to the readings for the next module!

