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MAXIMUM LIKELIHOOD ESTIMATION

Recall our random effects ANOVA model for the bike data.

That is,

where   .

 indicates the passing distance between the car and the bike, and 
represent effects of different distances between the bike and the curb.

Also, recall the general linear mixed effects models representation

with .

yij = μ + αj + εij,

εij
iid
∼ N(0,σ2) ⊥ αj

iid
∼ N(0, τ 2)

yij αj

Y = Xβ + Zb + ε,

Σ = Var(Y ) = τ 2ZZ ′ + σ2I
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MAXIMUM LIKELIHOOD ESTIMATION

Our  outcomes follow the multivariate Gaussian distribution, our
likelihood is given by

which we then need to maximize.

Since we often work with log-likelihoods, write

which we then minimize (as I took the negative) in order to find the MLE.

Peter Hoff's notes covers this is a bit more detail but we can just do it
directly in R, so let's do that.

N = nJ

(2π)− |Σ|
−

exp[− (y − Xβ)′Σ−1(y − Xβ)],
N

2

1
2

1

2

ℓ(y,β, Σ) = − [N log(2π) + log |Σ| + (y − Xβ)′Σ−1(y − Xβ)]

∝ log |Σ| + (y − Xβ)′Σ−1(y − Xβ),

1

2

3 / 16



MLE FOR BIKE DATA

Actually we can let the lmer function do the work for us.

load("data/PsychBikeData.RData")
library(lme4)
fit.ml=lmer(`passing distance` ~ (1 | kerb), REML=FALSE, data = PsychBikeData)
summary(fit.ml)
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MLE FOR BIKE DATA
## Loading required package: Matrix

## 
## Attaching package: 'Matrix'

## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack

## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: `passing distance` ~ (1 | kerb)
##    Data: PsychBikeData
## 
##      AIC      BIC   logLik deviance df.resid 
##   2028.7   2046.0  -1011.4   2022.7     2352 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5113 -0.6674 -0.0948  0.5511  6.3949 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  kerb     (Intercept) 0.009206 0.09595 
##  Residual             0.137203 0.37041 
## Number of obs: 2355, groups:  kerb, 5
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  1.54023    0.04363    35.3

Our ML estimates of  for the bike data are 

.

(μ, τ 2,σ2)

(μ̂, τ̂ 2, σ̂2) = (1.540, 0.009, 0.137)
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RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION

REML (restricted or residual maximum likelihood) estimation is quite popular
for variance component estimation.

Features of REML estimation include the following

it is based on a likelihood function that only uses information that does
not depend on fixed effects (we define new outcomes orthogonal to the
mean)

it is generally less biased than ML estimates (and unbiased in certain
special cases)
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MLE FOR ONE-SAMPLE SETTING

First, recall a one-sample setting in which we wish to estimate the sample
mean  and variance  using the model

with .

Then our log-likelihood is proportional to .

To find the MLE's of  and , take derivatives and solve for zero to obtain 

 and .

Of course typically we don't use the MLE to estimate  because of its well-
known small-sample bias, instead using the unbiased estimate 

.

μ σ2

yi = μ + εi,   i = 1, … ,n

εi ∼ N (0,σ2)

n logσ2 +
∑(yi−μ)2

σ2

μ σ2

μ̂ = ¯̄̄y σ̂
2 =

∑(yi−¯̄̄y)2

n

σ2

s2 = = σ̂
2∑(yi−¯̄̄y)2

n−1
n

n−1
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REML FOR SIMPLEST CASE

REML estimates are often based on a full-rank set of error contrasts -- the
basic idea is to retain the information in the data about the variance while
eliminating the fixed effects.

The full residuals  contain all the information in the likelihood
about the variance parameter . Because the residuals are independent of
the fixed effect , we can re-express our log likelihood to isolate the residual
likelihood:

We know  and so  which

reduces to  once we plug in the MLE  for .

A slightly different approach to this actually attempts to integrate out  from
the original likelihood.

εi = yi − μ
σ2

μ

ℓ(y,μ,σ2) = ℓ(ε,μ,σ2) + ℓ(¯̄̄y ,μ,σ2)

μ̂ = ¯̄̄y ∼ N (μ, )σ2

n ℓ(¯̄̄y ,μ,σ2) ∝ log +σ2

n

(¯̄̄y−μ)2

σ2

n

logσ2 − logn ¯̄̄y μ

μ
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REML FOR SIMPLEST CASE

Then

which is proportional to

which looks just like our ML likelihood with the exception of the multiplier 
 instead of , and it's straightforward to show the maximum is 

, where  is replaced with its estimate.

We can follow a similar approach for the random effects ANOVA model.

Because they are generally less biased than ML estimates, REML estimates are
typically the default frequentist estimates provided by many software
packages.

ℓ(ε,μ,σ2) ∝ n logσ2 + − logσ2 + logn
∑(yi − μ)2

σ2

(n − 1) logσ2 + ,
∑(yi − μ)2

σ2

n − 1 n

σ̂
2
REML =

∑(yi−μ)2

n−1
μ
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REML ESTIMATES FOR THE BIKE DATA

fit.reml=lmer(`passing distance` ~ (1 | kerb), REML=TRUE, data = PsychBikeData)
summary(fit.reml)

## Linear mixed model fit by REML ['lmerMod']
## Formula: `passing distance` ~ (1 | kerb)
##    Data: PsychBikeData
## 
## REML criterion at convergence: 2027
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5132 -0.6647 -0.0940  0.5498  6.3978 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  kerb     (Intercept) 0.01157  0.1076  
##  Residual             0.13720  0.3704  
## Number of obs: 2355, groups:  kerb, 5
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  1.54008    0.04876   31.59

Our REML estimates for the bike data are 
.(μ̂, τ̂ 2, σ̂2) = (1.540, 0.012, 0.137)
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EMPIRICAL BAYES

When we have random effects in a model, the standard frequentist effects of
these random quantities are called empirical Bayes estimates, regardless of
whether we obtain other estimates using ML or REML.
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EMPIRICAL BAYES

Recall our group means formulation:

Suppose  are known exactly and consider estimating  with an
estimator that is a linear function of the group sample mean .

Then one can show that the MSE  is minimized if 

and , so that , where 

yij = μj + εij

μ1, ⋯ ,μJ
iid
∼ N(μ, τ 2)

εij
iid
∼ N(0,σ2).

(μ, τ 2,σ2) μj

μ̂j = a¯̄̄y j + b

E[(μj − μ̂j)
2] a =

nj

σ2

+
nj

σ2
1

τ 2

b = (1 − a)μ μ̂j = wj
¯̄̄y j + (1 − wj)μ wj =

nj

σ2

+
nj

σ2
1

τ 2
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EMPIRICAL BAYES

If we knew  this estimate would be the Bayes estimate; however,
we do not know these parameters and are instead estimating them from the
data, so that

, where 

is called an empirical Bayes estimate because our unknown parameters have
been replaced by "empirical" estimates from the data.

While this estimate is widely-used, it has several unsatisfactory qualities,
including a standard variance estimate known to be an underestimate.

This is great motivation for consideration of Bayesian approaches when
formal comparisons among groups modeled with random effects are desired.

(μ, τ 2,σ2)

μ̂j = ŵj
¯̄̄y j + (1 − ŵj)μ̂ ŵj =

nj

σ̂2

+
nj

σ̂2
1

τ̂ 2
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EB ESTIMATES OF GROUP MEANS FOR BIKE DATA

table(PsychBikeData$kerb); mean(PsychBikeData$`passing distance`)

## 
## 0.25  0.5 0.75    1 1.25 
##  670  545  339  469  332

## [1] 1.563912

tapply(PsychBikeData$`passing distance`,PsychBikeData$kerb,mean)

##     0.25      0.5     0.75        1     1.25 
## 1.698054 1.590473 1.505519 1.490584 1.412813

coef(fit.ml)

## $kerb
##      (Intercept)
## 0.25    1.694619
## 0.5     1.589136
## 0.75    1.506981
## 1       1.492113
## 1.25    1.418287
## 
## attr(,"class")
## [1] "coef.mer"
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EB ESTIMATES OF GROUP MEANS FOR BIKE DATA

tapply(PsychBikeData$`passing distance`,PsychBikeData$kerb,mean)

##     0.25      0.5     0.75        1     1.25 
## 1.698054 1.590473 1.505519 1.490584 1.412813

coef(fit.reml)

## $kerb
##      (Intercept)
## 0.25    1.695307
## 0.5     1.589401
## 0.75    1.506687
## 1       1.491805
## 1.25    1.417201
## 
## attr(,"class")
## [1] "coef.mer"

Here we see only a slight shrinkage back towards the overall mean, due in
large part to the large sample sizes within curb distances.
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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