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Motivating Example: Cycling Safety

To understand how many complex hierarchical models work, we will need to
take a step back and start small, specifically, with ANOVA models.

Dr. Ian Walker at University of Bath carried out a project to investigate how
drivers overtake bicyclists.

His team modified a bicycle subtly to carry both a video system and an
accurate ultrasonic distance sensor that could record the proximities of each
passing vehicle.

The team then designed an experiment in which a cyclist (Dr. Walker) varied
the distance he rode from the curb (the British spelling kerb is used in the
dataset) from 0.25m to 1.25m in 0.25 m increments.
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Motivating Example: Cycling Safety

We will consider the outcome of passing distance , which is the measured
distance (in m) between the vehicle and the cyclist, as a function of the
distance from the bike to the curb (indexed by ), as some cyclists have
postulated that "the more room you take up, the more room they give you."

We'll use these data to test this "Theory of Big."

Our research question of interest is whether the distance from the bike to the
curb is indeed related to the passing distance between the bike and a
vehicle.

The data is in the PsychBikeData.RData file on Sakai.

yij

j
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https://www.hotels-in-netherlands.com/bikereadercom/contributors/misc/big.html


EDA
load("data/PsychBikeData.RData")
PsychBikeData$kerb <- as.factor(PsychBikeData$kerb)
dim(PsychBikeData)

## [1] 2355   11

head(PsychBikeData)

## # A tibble: 6 x 11
##   vehicle colour `passing distan… street Time                hour               
##   <fct>   <fct>             <dbl> <fct>  <dttm>              <dttm>             
## 1 ordina… blue              2.11  regul… 1904-01-01 16:30:00 1904-01-01 16:00:00
## 2 HGV     red               0.998 regul… 1904-01-01 16:30:00 1904-01-01 16:00:00
## 3 minibus blue              1.82  regul… 1904-01-01 16:30:00 1904-01-01 16:00:00
## 4 ordina… NA                1.64  regul… 1904-01-01 16:30:00 1904-01-01 16:00:00
## 5 bus     other             1.54  regul… 1904-01-01 16:30:00 1904-01-01 16:00:00
## 6 ordina… silve…            1.51  regul… 1904-01-01 16:30:00 1904-01-01 16:00:00
## # … with 5 more variables: helmet <fct>, kerb <fct>, Bikelane <fct>,
## #   City <fct>, date <dttm>
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EDA
str(PsychBikeData)

## tibble [2,355 × 11] (S3: tbl_df/tbl/data.frame)
##  $ vehicle         : Factor w/ 7 levels "ordinary","minibus",..: 1 5 2 1 4 1 2 1 4 7 ...
##  $ colour          : Factor w/ 8 levels "blue","red","silver/grey",..: 1 2 1 8 7 3 4 2 2 8 ...
##  $ passing distance: num [1:2355] 2.114 0.998 1.817 1.64 1.544 ...
##  $ street          : Factor w/ 6 levels "one way, one lane",..: 3 3 3 3 3 3 5 5 5 5 ...
##  $ Time            : POSIXct[1:2355], format: "1904-01-01 16:30:00" "1904-01-01 16:30:00" ...
##  $ hour            : POSIXct[1:2355], format: "1904-01-01 16:00:00" "1904-01-01 16:00:00" ...
##  $ helmet          : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 2 2 2 2 ...
##  $ kerb            : Factor w/ 5 levels "0.25","0.5","0.75",..: 2 2 2 2 2 2 4 4 4 4 ...
##  $ Bikelane        : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
##  $ City            : Factor w/ 3 levels "Salisbury","Bristol",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ date            : POSIXct[1:2355], format: "2006-05-11" "2006-05-11" ...
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EDA
summary(PsychBikeData)

##                 vehicle             colour    passing distance
##  ordinary           :1708   blue       :636   Min.   :0.394   
##  minibus            : 293   silver/grey:531   1st Qu.:1.303   
##  SUV/pickup         : 143   red        :378   Median :1.529   
##  bus                :  46   white      :333   Mean   :1.564   
##  HGV                :  82   black      :262   3rd Qu.:1.790   
##  taxi               :  49   green      :149   Max.   :3.787   
##  powered two-wheeler:  34   (Other)    : 66                   
##                         street          Time                    
##  one way, one lane         :   9   Min.   :1904-01-01 07:46:00  
##  one way, 2 lanes          :  13   1st Qu.:1904-01-01 10:14:00  
##  regular urban street      : 655   Median :1904-01-01 12:13:00  
##  regular residential street:  39   Mean   :1904-01-01 12:40:09  
##  main road, regular        :1637   3rd Qu.:1904-01-01 15:30:00  
##  rural                     :   2   Max.   :1904-01-01 17:12:00  
##                                                                 
##       hour                     helmet       kerb     Bikelane  
##  Min.   :1904-01-01 07:00:00   no :1206   0.25:670   no :2305  
##  1st Qu.:1904-01-01 10:00:00   yes:1149   0.5 :545   yes:  50  
##  Median :1904-01-01 12:00:00              0.75:339             
##  Mean   :1904-01-01 12:05:38              1   :469             
##  3rd Qu.:1904-01-01 15:00:00              1.25:332             
##  Max.   :1904-01-01 17:00:00                                   
##                                                                
##          City           date                    
##  Salisbury :1905   Min.   :2006-05-11 00:00:00  
##  Bristol   : 450   1st Qu.:2006-05-20 00:00:00  
##  Portsmouth:   0   Median :2006-05-27 00:00:00  
##                    Mean   :2006-05-27 12:08:15  
##                    3rd Qu.:2006-05-31 00:00:00  
##                    Max.   :2006-06-19 00:00:00  
##

6 / 28



EDA
ggplot(PsychBikeData,aes(`passing distance`)) +
  geom_histogram(fill="lightblue4",bins=20) + theme(legend.position="none") +
  labs(title="Distribution of Passing Distance",x="Passing Distance (m)") +
  theme_classic()
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EDA
ggplot(PsychBikeData,aes(`passing distance`)) +
  geom_histogram(aes(y=..density..),color="black",linetype="dashed",
                 fill=rainbow(15),bins=15) + theme(legend.position="none") +
  geom_density(alpha=.25, fill="lightblue") + scale_fill_brewer(palette="Blues") +
  labs(title="Distribution of Passing Distance",x="Passing Distance (m)") +
  theme_classic()
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EDA
ggplot(PsychBikeData,aes(y=`passing distance`, x=kerb, fill=kerb)) +
  geom_boxplot(outlier.colour = "red", outlier.shape = 1) + 
  scale_fill_brewer(palette="Greens") +
  labs(x="Distance from Curb (m)", y = "Passing Distance (m)") + 
   theme_classic() + theme(legend.position="none")

Research question: is distance from curb related to passing distance?
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EDA
table(PsychBikeData$kerb)

## 
## 0.25  0.5 0.75    1 1.25 
##  670  545  339  469  332

tapply(PsychBikeData$`passing distance`,PsychBikeData$kerb,mean)

##     0.25      0.5     0.75        1     1.25 
## 1.698054 1.590473 1.505519 1.490584 1.412813
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ANOVA Model

Consider the model

where .

These two equations are simply alternate parameterizations of the same
model.

In each case, we estimate a separate mean passing distance  as
a function of each of the 5 curb distances tested.

yij = μ + αj + εij (treatment effects model)

= μj + εij        (treatment means model)

μj = μ + αj

μj = μ + αj
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ANOVA Model

: expected passing distance (grand mean).

: expected passing distance for curb distance , with 
.

: deviation between overall expected passing distance and expected
passing distance for curb distance .

: deviations of observed passing distance from curb-distance-specific
expectations.

In the standard ANOVA model  is assumed so that  represents

an overall mean across groups.

Another coding scheme: set one  so that  represents the
expected passing distance in that particular group, and remaining 
measure differences from expected passing distance in that reference
group.

yij = μ + αj + εij = μj + εij

μ

μj j

j = 1, … , J = 5

αj

j

εij

∑j αj = 0 μ

αj = 0 μ

αj
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ANOVA Model

We also assume that  with  within all groups .

The expected passing distance for occasion  in with curb distance  is then

If we assume , then our model is  or

equivalently .

εij
iid
∼ f(ε) E(εij) = 0 j

i j

E(yij ∣ μ,α1, ⋯ ,αJ) = E(μ + αj + εij ∣ μ,α1, ⋯ ,αJ)

= μ + αj

= μj

f(ε) = N (0,σ2) yij ∼ N (μ + αj,σ
2)

yij ∼ N (μj,σ
2)
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Parameter estimation

Let  be our estimates of the unknown parameters 
.

The residual for  is the difference between the observed  and our fitted
value  and is given by

The ordinary least squares (OLS) estimate of , , is the value that
minimizes the sum of squared residuals (sum of squared errors) given by

μ̂ = (μ̂1, ⋯ , μ̂J)
μ = (μ1, ⋯ ,μJ)

yij yij
ŷ ij

ε̂ ij = yij − ŷ ij = yij − μ̂j.

μ μ̂OLS

SSE(μ) = ∑
j

∑
i

(yij − μj)
2.
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OLS Estimates

You can show (homework!) that the OLS estimates are given by

, where  is the sample mean in group .

, where  is the grand mean over all observations.

 when the sample sizes in each group j, , are equal for

all groups.

.

A helpful mnemonic may be the following "decomposition" of a single data
point:

(μ̂1, ⋯ , μ̂J) = (¯̄̄y1, ⋯ , ¯̄̄yJ) ¯̄̄y j j

μ̂ = ¯̄̄y ¯̄̄y

μ̂ = ∑j μ̂j
1
J

nj

α̂j = μ̂j − μ̂ = ¯̄̄y j − ¯̄̄y

yij = yij + ¯̄̄y j − ¯̄̄y j + ¯̄̄y − ¯̄̄y

= ¯̄̄y + (¯̄̄y j − ¯̄̄y) + (yij − ¯̄̄y j)

= μ̂   +      α̂j      +      ε̂ ij

15 / 28



Sums of Squares

Based on those ideas, let's decompose the variability of the data around the
grand mean into variation within groups (error) and variation between or
across groups (group effects).

For simplicity, suppose we have  groups with  observations in each group.

We break down the total variation of the data around the overall mean as
follows:

where

SST is the total sum of squared deviations around the overall mean,

SSG is the portion of the total sum of squares due to group differences,
and

SSE is the portion of the total sum of squares due to differences between
the individual observations and their own group means.

J nj

SST = SSG + SSE,
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Sums of Squares

We define the sums of squares as follows:

SST =
J

∑
j=1

nj

∑
i=1

(yij − ¯̄̄y)
2

SSG =
J

∑
j=1

nj

∑
i=1

(¯̄̄y j − ¯̄̄y)
2

SSE =
J

∑
j=1

nj

∑
i=1

(yij − ¯̄̄y j)
2
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ANOVA Table

The main use of ANOVA is to evaluate the hypothesis that there are no
differences across groups, e.g.   against the alternative
that at least one mean is different.

Testing in ANOVA involves comparison of the mean squares for groups and the
mean squares for error (we'll come back to why this is sensible) and can be
summarized in the ANOVA table.

Let  be the overall sample size.

Source DF SS MS F p-value

Groups SSG from 

Error SSE

Total SST

H0 : μj = μj′ ∀ j ≠ j′

N = ∑j nj

J − 1 MSG = SSG
J−1

MSG
MSE

FJ−1,N−J

N − J MSE = SSE
N−J

N − 1
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The variations in ANOVA
Using this cool Shiny app you can explore the roles of within-group and
between-group variance in ANOVA.
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https://gallery.shinyapps.io/anova_shiny_rstudio/


The variations in ANOVA
Here you see a situation with large within-group variance relative to the
between-group variance (e.g., not much of a group effect relative to the
variability within groups)
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The variations in ANOVA

In this case, the means are further apart and the between-group variance is
larger than in the prior figure, and differences among groups are more
apparent.
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MSE
The MSE can be written

MSE =

=

=

=

SSE

∑j(nj − 1)

∑J
j=1 ∑

nj

i=1 (yij − ¯̄̄y j)
2

∑j(nj − 1)

∑n1

i=1 (yi1 − ¯̄̄y1)
2

+ ⋯ + ∑nJ

i=1 (yiJ − ¯̄̄yJ)
2

(n1 − 1) + ⋯ + (nJ − 1)

(n1 − 1)s2
1 + ⋯ + (nJ − 1)s2

J

(n1 − 1) + ⋯ + (nJ − 1)
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MSE
In ANOVA, we typically assume independence of observations and equal
variances within all the groups.

We see that the  is a pooled estimate of the

within-group sample variance, and you can show that  if our
assumption of equal variances holds.

Using algebra, you can show that . Under the

null hypothesis that all the group means are the same, this expectation
reduces to .

MSE =
(n1−1)s2

1+⋯+(nJ−1)s2
J

(n1−1)+⋯+(nJ−1)

E(MSE) = σ2

E(MSG) = σ2 +
∑nj(μj−μ)2

J−1

σ2
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MSE
Thus under , , but if the group means are in fact

different from each other, we expect  and .

Under the assumption that , if  is also true, then

H0 E(F = ) = 1MSG

MSE

MSG > σ2 F > 1

εij
iid
∼ N(0,σ2) H0

F = ∼ FJ−1,N−J .
MSG

MSE
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Back to Passing Bikes

aov.res=aov(`passing distance`~kerb,data=PsychBikeData)
summary(aov.res)

##               Df Sum Sq Mean Sq F value Pr(>F)
## kerb           4   23.7   5.925   43.18 <2e-16
## Residuals   2350  322.4   0.137

This F test indicates that it is very unlikely we would see differences in
passing distance as large as we did under the null hypothesis that all groups
have the same mean.

There is a difference in passing distance for at least one set of curb
distances.

You should already know how to do rigorous model assessment so we won't do
that here.

The next two slides contain residual plots to help you probe the question of
whether the normality assumption is violated here.
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Residual plot

plot(density(residuals(aov.res)),xlab="Residual",main="",col=c("blue4"))
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Residual plot

plot(aov.res,which=2,col=c("blue4"))
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What's next?
Move on to the readings for the next module!
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